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Chapitre 14
Matrices

2 Matrices et systèmes linéaires

2.1 Interprétation matricielle d’un système linéaire

Remarque 27
On rappelle qu’un système linéaire à n équations et p inconnues s’écrit sous la forme

a11x1 +a12x2 + . . . +a1pxp = b1
a21x1 +a22x2 + . . . +a2pxp = b2
...

...

an1x1 +an2x2 + . . . +anpxp = bn

Ce système peut en fait s’écrire matriciellement : AX = b, où

A =


a11 a12 · · · a1p
a21 a22 · · · a2p
...

...

an1 an2 · · · anp

 , X =

x1
x2
...

xp

 , b =

b1
b2
...

bn



Cela permet de donner la

Définition 28
Un système linéaire à n équations et p inconnues est la donnée d’une matrice A ∈ Mn,p(K) et d’un
vecteur-colonne b ∈Mn,1(K).
Une solution du système est un vecteur-colonne X ∈Mp,1(K) tel que AX = b.
Le vecteur-colonne b est le second membre du système. Si b = 0, on dit que le système est homogène.

Exercice 29
Soit le système linéaire 

x + 2y − z + t = 4
3x − 8y = 2

2t = −1

Écrire ce système sous la forme AX = b.
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Proposition 30
Soit A ∈Mn,p(K), b ∈Mn,p(K). L’ensemble des solutions du système linéaire AX = b est ou vide, ou
de la forme

{X0 +Xh, Xh ∈Mp,1(K), AXh = 0}.

(« solution générale = solution particulière + solution générale de l’équation homogène »)

Proposition 31
Soit A dans Mn(K). Alors A est inversible ssi

∀b ∈Mn,1(K), ∃!X ∈Mn,1(K), AX = b.
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2.2 Matrices échelonnées et systèmes échelonnés

Définition 32 (Système échelonné)

1. Soit A ∈ Mn,p(K), L1, . . . , Ln les n lignes de A. On dit que A est échelonnée si chaque ligne a
strictement + de coefficients nuls à gauche, ou bien est nulle.
Plus précisément, en notant L1, . . . , Ln les lignes de A,

(i) il existe k ∈ J1, nK tel que ∀i 6 k , Li n’est pas nulle et ∀i > k , Li est nulle.

(ii) ∀i < k , m(Li) < m(Li+1),

où m(Li) est l’indice du premier terme non nul de Li .

2. Un système linéaire est dit échelonné si sa matrice est échelonnée.

Définition 33
Soient X1, X2, . . . , Xk k vecteurs colonne. On définit l’ensemble Vect(X1, X2, . . . , Xk) comme l’en-
semble des combinaisons linéaires de X1, X2, . . . , Xk :

Vect(X1, X2, . . . , Xk) = {λ1X1 + λ2X2 + · · ·+ λkXk , (λ1, λ2, . . . , λk) ∈ Kk}.

Proposition 34 (Solutions d’un système échelonné homogène)
Soit AX = 0 un système échelonné homogène à p inconnues et k lignes non nulles. Alors il existe
X1, . . . , Xp−k p − k vecteurs tels que l’ensemble des solutions soit Vect(X1, . . . , Xp−k).
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Que se passe-t-il lorsque le système n’est pas homogène ?

Proposition 35 (Solutions d’un système échelonné inhomogène)
Soit AX = B un système de n équations à p inconnues, tel que le système homogène associé soit
échelonné, avec k lignes non nulles. Alors nécessairement k 6 n. De plus,

1. Si k = n, alors le système admet une unique solution.

2. Si k < n, alors les lignes dont la partie homogène est nulle définissent des conditions de compati-
bilité. Si elles ne sont pas vérifiées, le système n’a pas de solution. Si elles sont vérifiées, il existe
une solution particulière X0 de Mp−k,1(K) et X1, . . . , Xp−k p− k vecteurs tels que l’ensemble des
solutions soit X0 +Vect(X1, . . . , Xp−k).

Remarque 36
Interprétation géométrique des équations de droites, de plans, et des recherches d’intersection.

Proposition 37
Soit A une matrice échelonnée de Mn(K). Alors A est triangulaire supérieure.

Rappel : résolvons un système échelonné.
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Proposition 38
Soit A ∈ T +

n (K). Alors A est inversible si, et seulement si ses coefficients diagonaux sont non nuls.
Dans ce cas A−1 est aussi triangulaire supérieure et ses coefficients diagonaux sont les inverses des
coefficients diagonaux de A.

Démonstration

On démontre le résultat par récurrence sur n.
Initialisation. Toute matrice triangulaire supérieure de taille 1 est une matrice de la forme (a) avec a ∈ K,
inversible ssi a 6= 0. Dans ce cas, (a)−1 = (a−1).
Hérédité. Suppososns le résultat vrai pour un certain n dans N∗. Soit A dans Tn+1(K). On peut écrire A

sous la forme A =
(
B C

01,n d

)
avec B ∈ T +

n (K), C ∈Mn,1(K), d ∈ K.

1. si A est inversible, alors on peut écrire son inverse sous la forme
(
B′ C′

L′ d ′

)
où B′ ∈ Mn(K), C′ ∈

Mn,1(K), L′ ∈M1,n(K) et d ∈ K. On a alors

• AA−1 = In+1, donc, par produit par blocs, comme
(
B C

01,n d

)(
B′ C′

L′ d ′

)
=

(
In 0n,1
01,n 1

)
,

— dd ′ = 1 donc d ′ 6= 0 et d ′ =
1

d
,

— dL′ = 01,n donc L′ = 01,n,

— BB′ + CL′ = In donc BB′ = In

• A−1A = In+1, donc de Même, B′B = In, donc B est triangulaire supérieure inversible, donc tous
ses coefficients diagonaux sont non nuls

Donc, comme d 6= 0, tous les coefficients diagonaux de A sont non nuls.

2. si A est à coefficients diagonaux non nuls, alors par hypothèse de récurrence, B est inversible. On

pose alors M =

B−1 −
1

d
B−1C

01,n
1

d

, et on vérifie aisément que MA = AM = In+1. Le fait que les

coefficients diagonaux de M soient les inverses de ceux de A est alors évident, car B−1 est triangulaire

supérieure à coefficients diagonaux inverses de ceux de B, et le dernier coefficient de M est
1

d
qui est

bien l’inverse du dernier coefficient diagonal de A.

�

Remarque 39
Le résultat est bien sûr tout aussi vrai pour les matrices triangulaires inférieures et pour les matrices
diagonales.

2.3 Opérations élémentaires et pivot
Définition 40 (Opérations élémentaires)

Soit A ∈Mn,p(K) une matrice. On définit les trois opérations élémentaires possibles sur les lignes.

1. L’échange de lignes, symbolisé par l’opération Li ↔ Lj .

2. La multiplication de Li par un réel non nul λ : Li ← λLi .

3. L’ajout de λ fois la ligne j à la ligne i , symbolisé par l’opération Li ← Li + λLj .

On définit les mêmes opérations sur les colonnes de A.
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Définition 41 (Matrices élémentaires)

• Soit (k, `) ∈ J1, nK2, k 6= ` et λ ∈ K∗, on appelle matrice de transvection la matrice :

Tk,`(λ) = Ip + λEk,` =



1
. . .

1
. . .

λ 1
. . .

1


︸ ︷︷ ︸

le λ est à la (k, `)-ième position

Cette matrice est inversible et son inverse est (Tk,`(λ))
−1 = Tk,`(−λ).

• Soit k ∈ J1, nK, λ ∈ K∗, on appelle matrice de dilatation la matrice :

Dk(λ) = In + (λ− 1)Ek,k =



1
. . .

1

λ

1
. . .

1


︸ ︷︷ ︸

le λ est à la (k, k)-ième position

Cette matrice est inversible et son inverse est Dk

(
1

λ

)
.

• Soit (k, `) ∈ J1, nK tel que k 6= `. On définit la matrice de permutation Pk` comme Pk` =
In + Ek` + E`k − Ekk − E``. Cette matrice est inversible d’inverse elle-même. On a donc

Pk` =



1

. . .

1

0 1

1

. . .

1

1 0

1

. . .

1


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Exercice 42

Soit A =

 1 2 3

−1 1 0

3 0 1

. Écrire les matrices T1,2(2), D3(−2) et P1,3 et effectuer rapidement les produits

T1,2(2)A, D3(−2)A, P1,3A, AT1,2(2), AD3(−2) et AP1,3
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Proposition 43
Soit A une matrice de Mn,p(K).

1. • si λ ∈ K, si (i , j) ∈ J1, nK2, si Ti ,j(λ) est la matrice de transvection de taille n × n comme
définie ci-dessus, alors Ti ,j(λ)×A est la matrice obtenue à partir de A en faisant l’opération
Li ← Li + λLj .

• si λ ∈ K, si k ∈ J1, nK, si Dk(λ) est la matrice de dilatation de taille n× n comme définie ci-
dessus, alors Dk(λ)×A est la matrice obtenue à partir de A en faisant l’opération Lk ← λLk .

• si λ ∈ K, si (i , j) ∈ J1, nK2, si Pi ,j est la matrice de permutation de taille n×n comme définie
ci-dessus, alors Pi ,j × A est la matrice obtenue à partir de A en faisant l’opération Lj ↔ Li .

2. • si λ ∈ K, si (i , j) ∈ J1, nK2, si Ti ,j(λ) est la matrice de transvection de taille n × n comme
définie ci-dessus, alors A× Ti ,j(λ) est la matrice obtenue à partir de A en faisant l’opération
Cj ← Cj + λCi .

• si λ ∈ K, si k ∈ J1, nK, si Dk(λ) est la matrice de dilatation de taille n× n comme définie ci-
dessus, alors A×Dk(λ) est la matrice obtenue à partir de A en faisant l’opération Ck ← λCk .

• si λ ∈ K, si (i , j) ∈ J1, nK2, si Pi ,j est la matrice de permutation de taille n×n comme définie
ci-dessus, alors A× Pi ,j est la matrice obtenue à partir de A en faisant l’opération Cj ↔ Ci .

De cette proposition on déduit la

Proposition 44
Dans un système linéaire, faire des opérations élémentaires ne change pas l’ensemble de solutions.

Démonstration

Soit AX = b un système linéaire d’inconnue X. Si on fait une série d’opérations élémentaires sur le système
linéaire, cela signifie que l’on dispose de B1, . . . , Bp p matrices élémentaires telles que le système soit trans-
formé en (Bp . . . B1)AX = (Bp . . . B1)b. Or, ces matrices étant toutes inversibles, on a leur produit Bp . . . B1
qui est inversible, donc (Bp . . . B1)AX = (Bp . . . B1)b ⇔ AX = b. �
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Proposition 45
Soit A une matrice de Mn,p(K). Alors A est équivalente en lignes à une matrice échelonnée. Plus
précisément, il existe une matrice B dans GLn(K), produit de matrices élémentaires, telle que BA est
échelonnée.

Démonstration

On démontre ce résultat par récurrence. Plus précisément, on montre que pour tout k dans J1, pK, il existe
Bk , produit de matrices élémentaires, tel que BkA est une matrice dont les k premières colonnes forment une
matrice échelonnée.
Initialisation. On considère la première colonne de A. Ou bien elle est nulle et alors B1 = In convient
(la première colonne de A constitue une matrice échelonnée). Sinon, alors A possède une ligne i0 telle que
ai0,1 6= 0. On multiplie alors A par P1,i0 . On obtient donc une matrice dont le premier coefficient est non nul.

Ensuite, on multiplie la matrice P1,i0A par D1

(
1

ai0,1

)
. Ceci permet de transformer la matrice en une matrice

dont le premier coefficient est égal à 1. On note D1

(
1

ai0,1

)
P1,i0A = A′, de coefficients (a′i j). On effectue

alors sur A′, pour tout i dans J2, nK, les opérations Li ← Li − a′i1L1. Cela permet de transformer la première

colonne de A en


1

0
...

0

.

En posant B1 comme le produit de toutes les matrices de transvection correspondantes, de D1

(
1

ai0,1

)
et de

P1,i0 , on a donc le résultat.
Hérédité. On suppose que l’on dispose, pour un certain k dans J1, p−1K, de Bk produit de matrices élémen-
taires tel que les k premières colonnes de BkA constituent une matrice échelonnée. Notons ` le plus grand
indice de ligne non nulle de BkA. Notons M = BkA, M = (mi j).
On considère alors la colonne k + 1 : ce

• ou bien tous les coefficients m`+1,k+1, m`+2,k+1, . . . , mn,k+1 sont nuls, et alors la matrice BkA est déjà
échelonnée.

• ou bien ça n’est pas le cas. On prend alors k0 tel que k0 > ` + 1 et α = mk0,k+1 6= 0, et on effectue
l’opération L`+1 ↔ Lk0 , i.e. on multiplie BkA par P`+1,k0 , afin d’obtenir une matrice M ′ de coefficients
(m′i j)16i ,j6n, dont le coefficient (`+ 1, k + 1) est égal à α 6= 0.

On fait, enfin, pour tout i dans J` + 2, nK, Li ← Li −
m′i ,k+1
α

Lk+1. Cela permet de supprimer tous les

coefficients de la colonne k + 1, et d’avoir une matrice dont les k + 1 premières colonnes forment une
matrice échelonnée.
En posant Bk+1 le produit de toutes ces matrices de transvection, de P`+1,k0 et de Bk , on a le résultat !

Conclusion. D’où l’hérédité et le résultat, en particulier au rang n : on dispose d’une matrice Bn, inversible,
telle que BnA est échelonnée. �

Point de méthode 46
Cela donne à nouveau une méthode pour résoudre un système linéaire : on échelonne sa matrice à l’aide
du pivot de Gauss, et on répercute les opérations sur le second membre.
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Proposition 47
Soit A une matrice triangulaire supérieure. Alors A est inversible si, et seulement si A est équivalente en
lignes à In.

Démonstration

⇒ La preuve est assez simple : soient (ai j)16i ,j6n les coefficients de A. Comme A est inversible, ses coef-
ficients diagonaux sont non nuls. Effectuons sur A les opérations élémentaires suivantes : pour tout i dans
J1, nK,

• On effectue Li ←
1

ai i
Li : on obtient des coefficients a′i j et des lignes L

′
i .

• On effectue pour tout j dans J1, i − 1K L′j ← L′j − a′j iL′i .
Ainsi, à l’étape i = 1, on obtient une colonne avec un 1 en haut à gauche, puis, à l’étape i = 2, on obtient
une colonne avec un 0 puis un 1, etc.
⇐ Pour le sens réciproque, c’est encore plus simple : si A est équivalente en lignes à In, alors on dispose,
par la proposition de B1, . . . , Bp p matrices inversibles telles que Bp . . . B1A = In. Comme B1, . . . , Bp sont
inversibles, Bp . . . B1 est aussi inversible, donc A = B−11 . . . B−1p qui est inversible. �

Exemples de résolutions de systèmes linéaires via le pivot.
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2.4 Pivot total pour une matrice carrée

Étant donnés les résultats des deux sections préédentes, on est en droit de se demander si les opérations
élémentaires ne nous permettraient pas d’obtenir d’inverse d’une matrice. La réponse est oui ! L’idée est très
simple.

Point de méthode 48
Soit A une matrice carrée. Une méthode pour déterminer l’inverse de A est de partir de la matrice A, à
laquelle on accolle la matrice identité, d’essayer de transformer A en la matrice identité à l’aide d’une
méthode de pivot de Gauss, et de répercuter les opérations sur la matrice identité. La matrice obtenue
à droite est alors l’inverse de A.
Explications : Si on transforme A en In par des opérations élémentaires, c’est que l’on a des matrices
élémentaires B1, . . . , Bq telles que BqBq−1Bq−2 . . . B1A = In. Donc A−1 = Bq . . . B1. Mais su on a
reporté les opérations sur In, cela signifie que la matrice obtenue à droite est Bq . . . B1In, donc A−1.

Problème, il faut que l’on justifie que l’on obtient l’inverse de A.

Exemple 49
ATTENTION ! On ne fait que des opérations sur les lignes, OU que des opérations sur les colonnes.
On ne mélange surtout pas les deux ! Un mélange horrible...(

1 1

1 2

∣∣∣∣ 1 0

0 1

)
⇔L2←L2−L1

(
1 1

0 1

∣∣∣∣ 1 0

−1 1

)
⇔C2←C2−C1

(
1 0

0 1

∣∣∣∣ 1 −1
−1 2

)
,

qui n’est pas vraiment l’inverse de la première matrice...

Exemples de calculs d’inverses de matrices carrées.
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Proposition 50
Soit A une matrice de Mn(K). Alors les ASSE :

1. A est inversible.

2. pour tout b dans Mn,1(K), le système AX = b d’inconnue X ∈Mn,1(K) admet exactement une
solution.

3. A est équivalente en lignes à In.

4. l’équation AX = 0n,1 d’inconnue X ∈Mn,1(K) admet comme seule solution la solution nulle.

5. pour tout b dans Mn,1(K), le système AX = b d’inconnue X ∈ Mn,1(K) admet au moins une
solution.

Démonstration

• L’équivalence des deux premières assertions a déjà été vue.

• Ensuite, on montre (1) ⇔ (3). Si A est inversible, alors A est équivalente en lignes à une matrice
triangulaire T . Cette matrice triangulaire est donc aussi inversible car on dispose de B inversible telle
que BA = T . Donc elle est équivalente en lignes à In. Donc A est équivalente en lignes à In.
Réciproquement, si A est équivalente en lignes à In, alors on dispose de B inversible telle que BA = In.
Donc A = B−1, inversible.

• Pour la suite on pose X0 =T (0 · · · 0 1).

• On continue en montrant (1)−(2)−(3)⇔ (4). Si A est équivalente en ligne à In, alors A est inversible,
donc si X ∈ Mn,1(K) est tel que AX = 0n,1, alors X = A−10n,1 = 0n,1. Donc le système admet une
seule solution. De même, si A n’est pas équivalente en ligne à In, elle est équivalente à une matrice
échelonnée dont la dernière ligne est nulle. On en déduit , si B est inversible telle que BA = T avec T
échelonnée de dernière ligne nulle, que tous les tX0, avec t ∈ K, sont solution de TX = 0. Donc ces
vecteurs vérifient BAX = 0, donc, comme B est inversible, AX = 0.

• Enfin, on finit avec (1)− (2)− (3)⇔ (5). Si A est inversible, alors si b ∈Mn,1(K), A−1b est solution
du système AX = b. Si A n’est pas inversible, alors on dispose de B inversible telle que BA = T

triangulaire de dernière ligne nulle. Mais alors TX a toujours une dernière ligne nulle. Donc TX = X0
n’a pas de solution. Donc BAX = X0 n’a pas de solution, donc AX = B−1X0 n’a pas de solution.

�

Proposition 51
Soit A ∈Mn(K). Alors A est inversible à gauche ssi A est inversible à droite ssi A est inversible.

Démonstration

Si A est inversible à gauche, alors on dispose de B dans Mn(K) telle que BA = In. Donc si X vérifie
AX = 0n,1, alors BAX = 0n,1, donc X = 0n,1. Donc l’équation AX = 0n,1 admet une unique solution, donc
A est inversible.
Si A est inversible à droite, alors on dispose de B dans Mn(K) telle que AB = In. Donc si b ∈Mn,1(K), si
X = Bb, alors AX = ABb = Inb = b, donc le système admet au moins une solution. Donc A est inversible.
�

Proposition 52
Les matrices d’opérations élémentaires engendrent GLn(K).
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