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TD 12
Convexité

1 Exercices corrigés en classe
Exercice 1. Quelques inégalités de convexité.  G##

1. Inégalité harmonico-arithmetico-géométrique : Soient x1, x2, . . . , xn des réels strictement positifs. Mon-
trer que

n
1
x1
+ · · ·+ 1

xn

6 (x1 · · · xn)
1
n 6

x1 + · · ·+ xn
n

.

2. Montrer que x ∈ R 7−→ ln(1 + ex) est convexe sur R, et en déduire pour tout n ∈ N∗ et tout
(x1, . . . , xn) ∈

(
R∗+
)n

:

1 +

(
n∏
k=1

xk

) 1
n

6

(
n∏
k=1

(1 + xk)

) 1
n

.

En déduire que pour tout n ∈ N∗ et tout (a1, . . . , an, b1, . . . , bn) ∈ (R∗+)2n,(
n∏
k=1

ak

) 1
n

+

(
n∏
k=1

bk

) 1
n

6

(
n∏
k=1

(ak + bk)

) 1
n

.

Exercice 2. Soit f : R→ R une fonction convexe majorée. Démontrer que f est constante.

Exercice 3. Comportement asymptotique des fonctions convexes.   # Soit f : R+ −→ R une fonction
convexe.

1. Montrer que la fonction x 7→
f (x)

x
possède une limite a ∈ R en +∞.

2. Si a ∈ R, démontrer que x 7→ f (x)− ax possède une limite b ∈ R en +∞.

3. Si b ∈ R, étudier la position de la courbe et de son asymptote.

Exercice 4. Inégalités de Hölder et de Minkowski . Soit p > 1. Pour tout X ∈ Rn, on appelle norme p de X

le réel positif ‖X‖p =

(
n∑
k=1

|xk |p
) 1

p

.

Soient p, q > 1 deux réels strictement positifs tels que
1

p
+
1

q
= 1.

1. Démontrer que pour tous réels x et y , xy 6
xp

p
+
yq

q
.

2. (inégalité de Hölder) En déduire que pour tous X, Y ∈ Rn tels que ‖X‖p = ‖Y ‖q = 1,

∣∣∣∣∣
n∑
k=1

xkyk

∣∣∣∣∣ 6 1,
puis que pour tous X et Y dans Rn, ∣∣∣∣∣

n∑
k=1

xkyk

∣∣∣∣∣ 6 ‖X‖p‖Y ‖q.
3. (inégalité de Minkowski) Démontrer que pour tous X, Y ∈ Rn : ‖X + Y ‖p 6 ‖X‖p + ‖Y ‖p.

Stratégie :
• Il faut pouvoir reconnaître la convexité dans des inégalités : exercices 7, 8, 9.

• Il faut pouvoir relier convexité et comportement global : exercice 5, 6, 12,

• Faites un exercice un peu plus raffiné au moins : exercice 14 ou 15.
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2 Exercices à faire en TD
Plus que jamais, les indications de fin de TD peuvent être utiles, afin de vous guider sur la question « à quelle
fonction appliquer une inégalité de convexité ? »

Exercice 5.  ## Soit f : [a, b] −→ R une fonction convexe positive pour laquelle f (a) = f (b) = 0. Montrer
que f est la fonction nulle.

Exercice 6.  ## Soit f : R → R, concave. Démontrer que s’il existe (a, b) ∈ R2 tels que a < b et
f (a) > f (b), alors f (x) −→

x→+∞
−∞.

Correction
Supposons que cela soit le cas. Alors

τ
f (b)− f (a)
b − a < 0.

Soit x > b. Par l’inégalité des pentes (attention, la fonction est convexe !),

τ >
f (x)− f (a)
x − a ,

donc
f (x) 6 (x − a)τ + f (a) −→

x→+∞
−∞,

d’où le résultat !

Exercice 7. G### Démontrer que :

∀x, y ∈]1,+∞[, ln
(
x + y

2

)
>
√
ln(x) ln(y)

Correction

Soit, pour x ∈]1,+∞[, f (x) = ln(ln(x)). Alors f ′ : x 7→
1

x ln(x)
, clairement décroissante. Donc f est

concave. Donc pour tous x et y dans ]1,+∞[,

f

(
x + y

2

)
>
f (x) + f (y)

2
,

i.e.

ln

(
ln

(
x + y

2

))
>
ln(ln(x)) + ln(ln(y)

2
= ln

(√
ln(x) ln(y)

)
,

d’où le résultat désiré en prenant l’exponentielle !

Exercice 8. Une application de l’inégalité arithmético-géométrico-harmonique.  ## Soient x1 . . . xn des réels
> 0. Montrer, en utilisant l’inégalité arithmético-géométrico-harmonique, que

x1
x2
+
x2
x3
+ . . .

xn−1
xn
+
xn
x1
> n.
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Correction
Là, la convexité ne saute pas aux yeux ! On remarque tout de même que, si l’on pose ai =

xi+1
xi

(pour

i ∈ J1, n − 1K), et an =
x1
xn
, alors

x1
x2
+
x2
x3
+ . . .

xn−1
xn
+
xn
x1
=

n∑
i=1

1

ai
.

Or, par l’inégalité arithmético-géométrico-harmonique,

n∑n
i=1

1
ai

6 n
√
a1 . . . an = 1,

d’où l’inégalité désirée !

Exercice 9.  G## Montrer que pour tous a, b, x, y > 0 :

(x + y) ln
x + y

a + b
6 x ln

x

a
+ y ln

y

b
.

Correction
Remarquons que l’inégalité se réécrit

ln
x + y

a + b
6

x

x + y
ln
x

a
+

y

x + y
ln
y

b
.

Et, comme on remarque que
x

x + y
+

y

x + y
= 1, on peut se demander si ce qui est à gauche est

combinaison convexe de ce qui est dans le ln à droite.

Pas de chance,
x + y

a + b
6=

x

x + y

x

a
−

x

x + y

y

b
. EN REVANCHE,

a + b

x + y
=

x

x + y

a

x
+

y

x + y

b

y
.

Ainsi, par concavité de ln,

ln
a + b

x + y
>

x

x + y
ln
a

x
+

y

x + y
ln
b

y
,

d’où l’inégalité désirée en prenant l’opposé !

Exercice 10.  G## Montrer que pour tout n dans N∗, (a1, . . . , an) ∈ R∗n+√√√√ n∑
i=1

ai >
1√
n

n∑
k=1

√
ai

En déduire que ∀x > 1, √
x2n − 1 >

√
x + 1

x − 1
xn − 1√

n
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Correction
On remarque que x 7→

√
x est concave. Ainsi, par l’inégalité de Jensen,√√√√1

n

n∑
k=1

ai >
1

n

n∑
k=1

√
ai ,

ce qui permet d’avoir exactement l’inégalité désirée.
Ensuite,

x2n − 1 = (x2 − 1)
n−1∑
k=0

x2k .

Ainsi, par l’inégalité précédente,

√
x2n − 1 =

√
x2 − 1

√√√√n−1∑
k=0

x2k

>
√
x2 − 1

1√
n

n−1∑
k=0

√
x2k

>
√
x2 − 1

1√
n

xn − 1
x − 1 =

√
x + 1

x − 1
xn − 1√

n
,

d’où le résultat désiré !

Exercice 11.  ## Encadrer la fonction cos sur [π/2, π] par deux bonnes fonctions affines nulles en π/2, de
la manière la plus optimale possible.

Correction
Là, on fait vraiment comme en cours ! La fonction cos est convexe sur [π/2, π] donc

• elle est sous la corde reliant les points
(π
2
, 0
)

et (π,−1), i.e. la droite y =

cos(pi)− cos(π/2)
pi − π

2

(
x −

π

2

)
, donc

∀x ∈
[π
2
, π
]
, cos(x) 6 −

2

π

(
x −

π

2

)
.

• elle est au-dessus de sa tangente en
π

2
, donc

∀x ∈
[π
2
, π
]
, cos(x) >

π

2
− x.

D’où
∀x ∈

[π
2
, π
]
,
π

2
− x 6 cos(x) 6 −

2

π
x + 1.

Exercice 12.   # Soit f et g deux fonctions convexes définies sur un intervalle I. Montrer que si f + g est
affine, alors f et g sont toutes les deux affines.

Exercice 13.   # Soit I un intervalle ouvert et f : I → R une fonction convexe. Montrer que f est
lipschitzienne sur tout segment inclus dans I.

Exercice 14. Limite de f (x)− xf ′(x).   G# Soit f : R→ R, convexe, dérivable, et g : x 7→ f (x)− xf ′(x).
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Indication. L’exercice est beaucoup plus simple si f est 2 fois dérivable... vous pouvez commencer avec cette
hypothèse.

1. Montrer que g admet une limite (éventuellement infinie) en +∞.

Correction

Si f est deux fois dérivable, c’est évident : on montre que g est décroissante.
Sinon, on prend 0 6 x < y , et on montre que

g(y)− g(x) = (y − x)
(
f (y)− f (x)
y − x − f ′(y)

)
+ x(f ′(x)− f ′(y)),

mais si x < y , par croissance des pentes et passage à la limite, on en déduit que

f (y)− f (x)
y − x 6 f ′(y),

donc, par croissance de f ′, on obtient g(y)− g(x) 6 0, donc g décroît, donc admet une limite en
+∞.

On se place dans le cas où g admet une limite finie p

2. Démontrer que x 7→
f (x)− f (0)

x
et x 7→

f (x)− p
x

admettent des limites en +∞, puis en déduire que

f (x)

x
et f ′(x) admettent une même limite finie m en +∞.
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Correction

Posons ∀x > 0 ϕ(x) =
f (x)− p

x
et ψ(x) =

f (x)− f (0)
x

Par dérivation, on a

∀x > 0 ϕ′(x)−
1

x2
[f (x)− xf ′(x)− p] = −

g(x)− p
x2

et

∀x > 0 ψ′(x) = −
1

x2
[f (x)− xf ′(x)− f (0)] = −

g(x)− f (0)
x2

La fonction g étant décroissante, on a p 6 g(x) 6 g(0) pour tout x > 0 on en déduit

∀x > 0 ϕ′(x) 6 0 et ψ′(x) > 0

et on a également
∀x > 0 ψ(x) 6 ϕ(x)

Ainsi
∀x > 1 ψ(1) 6 ψ(x) 6 ϕ(x) 6 ϕ(1)

Par limite monotone, les fonctions ϕ et ψ admettent donc des limites finies en +∞. Enfin, on a

∀x > 0 ϕ(x)− ψ(x) =
f (0)− p

x
−→
x→+∞

0

On en déduit que les fonctions ϕ et ψ admettent une même limite finie m en +∞. Ainsi, on
obtient pour x > 0

f (x)

x
= ϕ(x) +

p

x
=

x→+∞
m + o(1) et f ′(x) =

f (x)

x
−
g(x)

x
=

x→+∞
m + o(1) +

p + o(1)

x

On conclut Les fonctions
f (x)

x
et f ′(x) admettent une même limite finie m pour x → +∞.

3. Montrer alors que f (x)−mx − p −→
x→+∞

0.

Correction

On pose ϕ(x) =
f (x)− p

x
pour x > 0. Par dérivation, on a

∀x > 0, ϕ′(x) = −
1

x2
(f (x)− xf ′(x)− p) 6 0.

Ainsi, ϕ décroît et ϕ(x) −→
x→+∞

m d’où ϕ(x) > m pour tout x > 0 et ainsi ∀x > 0, f (x)−mx > p.
Comme f ′ croît en tendant vers m en +∞, on obtient

∀x > 0, p 6 f (x)−mx 6 f (x)− xf ′(x),

donc, par encadrement, f (x)−mx − p −→
x→+∞

0.

Exercice 15.   # On dit que f : I→ R∗+ est logarithmiquement convexe sur l’intervalle I si ln f est convexe
sur I.

1. Soit f définie par f (x) = e2x−cos x , montrer que f est convexe sur R.
2. Montrer que si f est logarithmiquement convexe, alors f est convexe. Réciproque ?

3. Montrer que f est logarithmiquement convexe si, et seulement si, pour tout α > 0, f α est convexe.
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4. Montrer que f est logarithmiquement convexe si, et seulement si, pour tout a ∈ R, x 7−→ eax f (x) est
convexe.

5. Montrer que le produit et la somme de deux fonctions logarithmiquement convexes l’est aussi.

Exercice 16.   G# Soit f : R+ −→ R positive, bornée, de classe C2 telle que f 6 f ′′.

1. Montrer que f est convexe et décroissante.

Correction

Comme f est positive, f ′′ est positive, donc f est convexe. De plus, s’il existait x < y tels que
f (x) < f (y), on aurait, par inégalité des pentes, f (x) −→

x→+∞
+∞, donc f ne serait pas bornée.

Donc f est décroissante

2. Montrer que f ′ tend vers 0 en +∞.

Correction

Comme f ′ est décroissante, elle admet une limite en +∞, dans R− ∪ {−∞}. Si cette limite
est réelle non nulle, disons α < 0, f ′(x) < α/2 pour x assez grand (disons x > x0. Ainsi,

f (x)− f (x0) =
ˆ x

x0

f ′(t)dt 6 (x − x0)
α

2
−→
x→+∞

−∞, ce qui contredit le caractère positif de f .

Si f ′(x) −→
x→+∞

−∞, c’est la même chose ! Donc f ′(x) −→
x→+∞

0.

3. Soit g et h définies par g(x) = f (x)ex et h(x) = (f ′(x) + f (x)) e−x pour x > 0. Étudier le signe de h,
et les variations de g.

Correction

On remarque que g′(x) = (f (x) + f ′(x))ex et que h′(x) = (f ′′(x)− f (x))e−x 6 0, donc h croît.
Comme f ′ est bornée (elle tend vers 0), et f est bornée, on en déduit que h(x) −→

x→+∞
0, donc h

est négative sur R+. Ceci nous permet d’affirmer que f + f ′ est toujours négative, donc g décroît.

4. En déduire que pour x > 0, on a f (x) 6 f (0)e−x .

Correction

On en déduit que g(x) 6 g(0) pour tout x > 0, donc que f (x)ex 6 f (0), ce qui est le résultat
désiré !

Exercice 17.   G# Soit f : R→ R, continue telle que pour tout (x, y) ∈ R2,

f

(
x + y

2

)
6
f (x) + f (y)

2
.

Montrer que f est convexe.

Correction
Remarque. On sait (cf. TD sur les suites) que l’ensemble des dyadiques :

Dy =
{ a
2b
, a ∈ Z, b ∈ N

}
est dense dans R. On va donc démontrer que si (x, y) ∈ R2,

f (λx + (1− λ)y) 6 λf (x) + (1− λ)f (y),
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pour tout λ ∈ [0, 1] ∩Dy .
On montre par récurrence sur n > 1 que,

∀(x, y) ∈ R2, ∀p ∈ {0, 1, . . . , 2n} f
( p
2n
x +

(
1−

p

2n

)
y
)
6
p

2n
f (x) +

(
1−

p

2n

)
f (y). (Pn)

L’initialisation est claire.
Soit n ∈ N tel que Pn. Soit p ∈

{
0, 1, . . . , 2n+1

}
. Quitte à inverser x et y , on peut supposer que p 6 2n.

On utilise alors l’hypothèse de base en séparant en 2 notre expression.

f
( p

2n+1
x +

(
1−

p

2n+1

)
y
)
= f

(
1

2

(
p

2n
x +
(2n − p)
2n

y

)
+
1

2

(
2ny

2n

))
6
1

2

(
f

(
p

2n
x +
(2n − p)
2n

y

)
+ f (y)

)
6
1

2

(
p

2n
f (x) +

2n − p
2n

f (y) + f (y)

)
6

p

2n+1
f (x) +

(
2n − p
2n+1

+
1

2

)
f (y)

6
p

2n+1
f (x) +

2n+1 − p
2n+1

f (y)

Ceci prouve l’hérédité et le résultat !

Indications.

1. Dans la première question, tout vient de la concavité de ln et de l’inégalité de Jensen.

2. Utiliser l’inégalité des pentes pour montrer que f tend vers +∞ ou −∞ en +∞ ou −∞.

5. Utiliser l’inégalité des pentes, ainsi que la positivité de f .

6. Utiliser, encore, l’inégalité des pentes. (oui, elle est très importante, cette inégalité !)

7. Utiliser, en la démontrant, la concavité de x 7→ ln(ln(x))

8. Poser, pour i ∈ J1, n − 1K, ai =
xi
xi+1

, et an =
xn
x1
.

9. Utiliser la concavité du ln (peut-être la convexité de − ln d’ailleurs... !), toujours, mais pas directement
avec x et y : c’est ça la subtilité !

10. Utiliser la concavité de x 7→
√
x puis l’inégalité de Jensen. Ensuite, factoriser x2n − 1 = (x2 − 1)× . . . .

11. Calquer sur l’exercice de cours avec le sinus.

12. Raisonner par l’absurde : quelle inégalité stricte vérifie une fonction convexe non affine ?

13. Utiliser l’inégalité des pentes, en pensant au fait que si [a, b] ⊂ I, il existe c ∈ I, c > b.

14. 1. Démontrer que g est décroissante (attention, f n’est pas deux fois dérivable donc on ne peut pas
dériver g !) Revenir donc à la définition de la décroissance et utiliser la croissance des pentes.

2. Démontrer que h : x 7→
f (x)

x
admet une limite et qu’elle est bornée, puis remarquer que f ′(x) =

g(x)

x
+
f ′(x)

x
.

3. Démontrer que ϕ(x) =
f (x)− p

x
décroît en tendant vers m, puis utiliser que f ′ croît en tendant

vers m pour conclure par théorème d’encadrement.

15. 1. Dériver simplement deux fois !

2. Remarquer que l’on peut composer une inégalité de convexité par une fonction convexe croissante !
(l’exponentielle, à tout hasard...) Pour la réciproque, cf. la question précédente.
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3. Pour le sens direct, faire comme la question précédente. Pour le sens réciproque, pour x fixé,
quelle est la dérivée de α 7→ f (x)α ? Cela devrait pouvoir aider à prendre une limite d’un taux
d’accroissement pour démontrer la log-convexité !

4. Un sens est évident. Pour l’autre, vraiment plus dur, Montrer que si toutes les fonctions fc sont
convexes, alors pour tous x, y ∈ I avec x 6= y , et λ ∈]0, 1[. ∀c ∈ R : f ((1 − λ)x + λy) 6
(1 − λ)ecλ(x−y)f (x) + λec(1−λ)(y−x)f (y). Considérer ensuite la valeur de c pour laquelle ϕ(c) =
(1− λ)ecλ(x−y)f (x) + λec(1−λ)(y−x)f (y) est minimal, et vérifier que pour cette valeur de c , on a
ϕ(c) = f (x)1−λf (y)λ. Conclure !

5. Utiliser l’une des deux caractérisations précédentes !

16. 1. Supposer qu’il existe a < b tels que f (a) < f (b) et utiliser l’inégalité des pentes !

2. Raisonner par l’absurde en remarquant que f ′ a nécessairement une limite dans R− ∪ {−∞}, puis

remarquer, par exemple, que f (x)− f (x0) =
ˆ x

x0

f ′(t)dt.

3. C’est juste du calcul, ainsi qu’une inégalité entre une fonction monotone et sa limite.

4. Déduction directe.

17. Exercice difficile ! Remarquer que l’ensemble des dyadiques,
{ a
2b
, a ∈ Z, b ∈ N

}
est dense dans R, et

prouver l’inégalité de convexité uniquement pour des λ dyadiques ! Il faut pour cela faire une récurrence
sur la puissance de 2 au dénominateur.
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