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TD 15
Analyse asymptotique

1 Exercices corrigés en classe
Exercice 1. Effectuer le dl...

1. à l’ordre 3 en 0 de th(x).

Correction

th(x) = x −
x3

3

2. à l’ordre 3 en 0 de
sin(x) + sh(x)− tan(x)− th(x).

Correction

o(x5)

3. à l’ordre 3 en 0 de
(ex + sin(x))(1− ln(1 + x)).

Correction

1 + x − x2 + o(x2).

4. à l’ordre 3 en 1 de ex + ln(x).

Correction

e + (1 + e)(x − 1) + 1/2(e− 1)(x − 1)2 + 1/6(2 + e)(x − 1)3

5. à l’ordre 2 en
π

4
de cos(x)− sin(x).

Correction

−
√
2
(
x −

π

4

)
+ o

((
x −

π

4

)2)
.

6. à l’ordre 100 en 0 de ln

(
99∑
k=0

xk

k!

)
.

Correction

Question piège (et un 20 en DS à quelqu’un qui fait effectivement le dl à l’ordre 99). Remarquons

que ex =
100∑
k=0

xk

k!
+
x100

100!
+ o(x100), donc

100∑
k=0

xk

k!
= ex −

x100

100!
+ o(x100),

donc

ln

(
100∑
k=0

xk

k!

)
= ln

(
ex
(
1− e−x

x100

100!
+ o(e−xx100)

))
= 1 + ln

(
1− e−x

x100

100!
+ o(e−xx100)

)
= 1− e−x

x100

100!
+ o

(
−e−x

x100

100!

)
.

Or,−e−x
x100

100!
∼
x→0
−
x100

100!
, donc o

(
−e−x

x100

100!

)
= o(x100). De même, e−x

x100

100!
=
x100

100!
+o(x100)

Donc

ln

(
100∑
k=0

xk

k!

)
= 1−

x100

100!
+ o(x100)

Exercice 2. Un joli dl . 1. Soit p ∈ N∗. Exprimer, à l’aide de factorielles,
p−1∏
i=0

2i + 1

2
.

Correction
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On écrit que

p−1∏
i=0

2i + 1

2
=

p∏
i=1

2i − 1
2

=
1

2p

p∏
i=1

(2i − 1)

=
1

2p
(2p)!∏p
i=1(2i)

=
1

4p
(2p)!

p!

2. Déterminer, pour n ∈ N, le dl à l’ordre n en 0 de
1√
1− x

.

Correction

On écrit que
1√
1− x

=

n∑
k=0

1

k!

k−1∏
i=0

(
−
1

2
− i
)
(−x)k + o(xn).

Or,

(−1)k
k−1∏
i=0

(
−
1

2
− i
)
=

k−1∏
i=0

2i + 1

2

=
1

4k
(2k)!

k!
par la question précédente.

D’où

1√
1− x

=

n∑
k=0

1

4k

(
2k

k

)
xk .

Jolie formule, non ?

Exercice 3. Déterminer les limites suivantes

1. lim
x→0

1

x2
−

1

tan2(x)

2. lim
n→+∞

(
3

n
√
2− 2 n

√
3
)n

Exercice 4. Déterminer la limite `, quand n tend vers +∞, de

un =

(
2

√
1 +
1

n
−
√
1 +
2

n

)n2
,

ainsi qu’un équivalent simple de un − `.
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Correction
On écrit que

un =

(
2

√
1 +
1

n
−
√
1 +
2

n

)n2

= exp

[
n2 ln

(
2

√
1 +
1

n
−
√
1 +
2

n

)]

=
n→+∞

exp

[
n2 ln

(
2

(
1 +

1

2n
−
1

8n2
+
1

16n3

)
−

(
1 +

2

2n
−
1

8

(
2

n

)2
+
1

16

(
2

n

)3)
+ o

(
1

n3

))]

=
n→+∞

exp

[
n2 ln

(
1 +

1

4n2
−
3

8n3
+ o

(
1

n3

))]
=

n→+∞
exp

[
n2
(
1

4n2
−
3

8n3
+ o

(
1

n3

))]
=

n→+∞
exp

[(
1

4
−
3

8n
+ o

(
1

n

))]
= e

1
4 −
3e

1
4

8n
+ o

(
1

n

)
,

donc la limite ` est e
1
4 et un équivalent de un − ` est −

3e
1
4

8n

Exercice 5. Études locales.
1. Étudier le prolongement par continuité et la dérivabilité (et, le cas échéant, la position relative de la

courbe et de la tangente) de la fonction f : x 7→
e1+sin(x) − e
tan(x)

, au point d’abscisse 0.

Correction

Déterminons un dl en 0 de
e1+sin(x) − e
tan(x)

= e
esin(x) − 1
tan(x)

. Déjà,

esin(x) − 1 = ex−
x3

6
+o(x3) − 1 = x −

x3

6
+
x2

2
+
x3

6
+ o(x3) = x +

x2

2
+ o(x3).

De plus, tan(x) = x +
x3

3
+ o(x3), donc

esin(x) − 1
tan(x)

=
x + x2

2 + o(x
3)

x + x3

3 + o(x
3)
=
1 + x

2 + o(x
2)

1 + x2

3 + o(x
2)
=
(
1 +

x

2

)(
1−

x2

3

)
+o(x2) = 1+

x

2
−
x2

3
+o(x2).

L’équation de la tangente est donc y = e +
ey

2
, et la courbe est localement sous sa tangente.

2. Étudier, au voisinage de 0, g : x 7→
xx − 1

1− x + ln x .

3. Étudier, au voisinage de +∞, la fonction h : x 7→
xch(x)− sh(x)
chx − 1 .

Exercice 6. Étude d’une bijection réciproque. Soit f (x) = x + ln x pour x > 0.

1. Montrer que f réalise une bijection de R∗+ sur R. On note g = f −1.

2. Montrer que g est de classe C∞.

Page 3 sur 15



MPSI Pasteur 2025-2026
Analyse asymptotique

N. Laillet
nlaillet.math@gmail.com

3. Trouver le développement limité de g en 1 à l’ordre 2 .

4. Donner un développement asymptotique de g en +∞ à trois termes (on pourra remarquer que pour
tout y ∈ R, g(y) + ln(g(y)) = y)).

Correction

Comme indiqué par l’énoncé, on remarque en effet que pour tout y dans R, f (g(y)) = y , i.e.

g(y) + ln(g(y)) = y .

Mais, comme f (x) −→
x→+∞

+∞, g(y) −→
y→+∞

+∞, donc, en particulier, ln(g(y)) =
y→+∞

o(g(y)).

Donc g(y) + ln(g(y)) ∼
y→+∞

g(y), donc g(y) ∼
y→+∞

y . On a donc

g(y)− y = − ln(g(y)) ∼
y→+∞

− ln(y),

par le passage des équivalents au ln qu’il faut toujours justifier. Mais donc, on a g(y) = y− ln(y)+
o(ln(y)), donc

g(y) = y − ln(g(y))
=

y→+∞
y − ln(y − ln(y) + o(ln(y))

=
y→+∞

y − ln(y)− ln
(
1−
ln(y)

y
+ o

(
ln(y)

y

))
(en factorisant par ce qui est gros !)

=
y→+∞

y − ln(y) +
ln(y)

y
+ o

(
ln(y)

y

)

Exercice 7. 1. Montrer que pour tout n dans N∗, l’équation x3 + nx = 1 admet une unique solution, que
l’on notera un.

2. Démontrer que un possède une limite que l’on déterminera.

3. Montrer que un =
1

n
−
1

n4
+ o

(
1

n4

)
.

2 Exercices faits en TD
Exercice 8.  ## Effectuer le développement limité...

1. à l’ordre 3 en 0 de
1

1− x − e
x .

2. à l’ordre 5 en 0 de sin(x) cos(2x).

3. à l’ordre 3 en 0 de (x3 + 1)
√
1− x.

4. à l’ordre 4 en 0 de
√
1− x +

√
1 + x.

5. à l’ordre 4 en 0 de cos(x) ln(1 + x).

6. à l’ordre 4 en 0 de (ln(1 + x))2.

7. à l’ordre 3 en
π

3
de sin(x).

8. à l’ordre 3 en 0 de ln
(
x2 + 1

x + 1

)
.

9. à l’ordre 3 en 0 de ln(1 + sin x).

10. à l’ordre 3 en 1 de cos(ln(x)).
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11. à l’ordre 3 en 0 de ln(1 + ex).

12. à l’ordre 3 en 0 de ln(2 + sin x).

13. à l’ordre 3 en 0 de e
√
1+x .

14. à l’ordre 2 en 0 de ln(1 +
√
1 + x).

15. à l’ordre 3 en 0 de ln(3ex + e−x).

16. à l’ordre 2 en 0 de (1 + x)1/x .

17. à l’ordre 4 en 0 de ln
(
sin x

x

)
.

18. à l’ordre 3 en 0 de
ln(1 + x)

ex − 1 .

19. à l’ordre 2 en 0 de
Arctanx

tan x
.

20. à l’ordre 2 en 1 de
x − 1
ln x

.

21. à l’ordre 6 en 0 de (cos(x))sin(x).

22. à l’ordre 4 en 1 de
ln(x)

x2
.

23. à l’ordre 4 en 0 de ln
(
th(x)

x

)
.

24. à l’ordre 100 en 0 de ln

(
99∑
k=0

xk

k!

)
.

Correction
Je ne détaillerai pas les calculs de chaque dl, mais indiquerai les réponses en précisant, si besoin est, la
grosse difficulté.

1. somme classique de dl :
1

1− x − e
x =

x2

2
+
5x3

6
+ o(x3).

2. produit classique de dl : sin(x) cos(2x) = x −
13

6
x3 +

121

120
x5 + o(x5).

3. produit classique de dl, en remarquant que le premier terme est déjà un dl : (x3 + 1)
√
1− x =

1−
x

2
−
x2

8
+
15

16
x3 + o(x3)

4. somme classique de dl :
√
1− x +

√
1 + x = 2−

x2

4
−
5

64
x4 + o(x4).

5. produit classique de dl :

cos(x) ln(1 + x) = x −
x2

2
−
x3

6
+ o(x4).

6. produit classique de dl : (ln(1 + x))2 = x2 − x3 +
11x4

12
+ o(x4).

7. attention, dl pas en 0 ! On pose u = x−
π

3
. Alors sin

(
u +

π

3

)
=

√
3

2
+
u

2
−
√
3

4
u2−

u3

12
+o(u3),

donc

sin (x) =

√
3

2
+
1

2

(
x −

π

3

)
−
√
3

4

(
x −

π

3

)2
−
1

12

(
x −

π

3

)3
+ o

((
x −

π

3

)3)
.

Attention on ne développe pas les puissances
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8. somme classique de dl si on pense à séparer le ln. Attention juste à une (mini) composition avec
le x2.

ln

(
x2 + 1

x + 1

)
= −x +

3

2
x2 −

1

3
x3 + o(x3).

9. composition standard de dl : ln(1 + sin x) = x −
1

2
x2 +

1

6
x3 + o(x3).

10. composition + dl pas en 0 : à l’ordre 3 en 1 de cos(ln(x)) = 1−
1

2
(x−1)2+

1

2
(x−1)3+o((x−1)3).

11. attention, ce qu’il y a à l’intérieur du ln ne tend pas vers 0 ! Il faut écrire ln(1+ex) = ln(2
1 + ex

2
) =

ln(2) + ln

(
1 + ex

2

)
, et ensuite faire un changement de variables.

ln(1 + ex) = ln(2) +
x

2
+
x2

8
+ o(x3).

12. attention, ce qu’il y a à l’intérieur ne tend pas vers 1 !

ln(2 + sin x) = ln(2) +
x

2
−
x2

8
−
x3

24
+ o(x3).

13. composition de fonctions :e
√
1+x = e +

ex

2
+
ex3

48
+ o(x3).

14. composition, mais attention à la limite à l’intérieur du ln !

ln(1 +
√
1 + x) = ln(2) +

x

4
−
3x2

32
+ o(x2).

15. encore une fois, il faut avant tout repérer la limite à l’intérieur du ln. Ici on se rend compre que
cette limite est égale à 4, donc on va nécessairement tout factoriser par 4, et on trouvera du ln(4)
à l’ordre 0.

ln(3ex + e−x) = ln(4) +
x

2
+
3x2

8
−
x3

8
+ o(x3).

16. on a une puissance, on utilise obligatoirement l’exponentielle, et on trouve : (1 + x)1/x = e −
ex

2
+
11ex2

24
+ o(x2)

17. attention, pour le quotient à l’intérieur, il faut remarquer que le numérateur et le dénominateur
sont tous deux équivalents à x : ces x vont se simplifier dans les dl, mais il faudra par conséquent
pousser le dl à un ordre de plus :

ln

(
sin x

x

)
= −

x2

6
−

x4

180
+ o(x4).

18. quotient avec simplifications.
ln(1 + x)

ex − 1 = 1− x +
2x2

3
−
11x3

24
+ o(x3).

19. on détermine le dl de Arctan par primitivation, puis on effectue le quotient :
Arctanx

tan x
= 1−

2x2

3
+

o(x2).

20. quotient avec simplifications + on n’est pas en 0 ! :
x − 1
ln x

= 1+
(x − 1)
2

−
(x − 1)2

12
+o((x−1)2).

21. On repasse par la forme exponentielle : cos(x)sin(x) = esin(x) ln(cos(x)). Or, sin(x) ∼ x donc il suffit de

développer ln(cos(x)) à l’ordre 5. De même, ln(cos(x)) sin(x) ∼ −
x2

2
donc il suffit de développer

sin(x) à l’ordre 4. On a, en posant u = cos(x)− 1, ln(cos(x)) = ln(1+ u) = u −
u2

2
+ o(u2). Or,

u = cos(x)− 1 = −
x2

2
+
x4

24
+ o(x5) donc

ln(cos(x)) = −
x2

2
+
x4

24
−
x4

8
+ o(x5) = −

x2

2
−
x4

12
+ o(x5),
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donc

sin(x) ln(cos(x)) =

(
x −

x3

6
+ o(x4)

)(
−
x2

2
−
x4

12
+ o(x5)

)
= −

x3

2
−
x5

12
+
x5

12
+ o(x6) = −

x3

2
+ o(x6)

Donc, en posant u = sin(x) ln(cos(x)), u ∼ −
x3

2
donc il suffit de développer eu à l’ordre 2 en u :

eu = u +
u2

2
+ o(u2) donc esin(x) ln(cos(x)) = 1−

x3

2
+
x6

8
+ o(x6), d’où le résultat voulu !

22. On pose u = x − 1. Alors

ln(x)

x2
=
ln(1 + u)

(1 + u)2

=

(
u −

u2

2
+
u3

3
−
u4

4
+ o(u4)

)(
1− 2u + 3u2 − 4u3 + o(u3)

)︸ ︷︷ ︸
ordre 3 car le terme de gauche est ∼u

= u − 2u2 + 3u3 − 4u4 −
u2

2
+ u3 −

3

2
u4 +

u3

3
−
2

3
u4 −

u4

4
+ o(u4)

= u −
5

2
u2 +

13

3
u3 −

77

12
u4 + o(u4)

= (x − 1)−
5

2
(x − 1)2 +

13

3
(x − 1)3 −

77

12
(x − 1)4 + o((x − 1)4)

23. On détermine le développement limité de th(x) en remarquant que th′(x) = 1 − th2(x), et en

faisant comme le développement limité de tan. On trouve th(x) = x −
x3

3
+
2

15
x5 + o(x5), donc

th(x)

x
= 1−

x2

3
+
2

15
x4 + o(x4).

Ensuite, il suffit de faire le dl de ln(1 + u) à l’ordre 2 (le premier terme étant éauivalent à −x2/3,
et on trouve (excusez-moi pour les coefficients...)

ln

(
th(x)

x

)
= −

x2

3
+
7x4

90
+ o(x4).

24. Question piège (et un 20 en DS à quelqu’un qui fait effectivement le dl à l’ordre 99). Remarquons

que ex =
100∑
k=0

xk

k!
+
x100

100!
+ o(x100), donc

100∑
k=0

xk

k!
= ex −

x100

100!
+ o(x100),

donc

ln

(
100∑
k=0

xk

k!

)
= ln

(
ex
(
1− e−x

x100

100!
+ o(e−xx100)

))
= 1 + ln

(
1− e−x

x100

100!
+ o(e−xx100)

)
= 1− e−x

x100

100!
+ o

(
−e−x

x100

100!

)
.
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Or,−e−x
x100

100!
∼
x→0
−
x100

100!
, donc o

(
−e−x

x100

100!

)
= o(x100). De même, e−x

x100

100!
=
x100

100!
+o(x100)

Donc

ln

(
100∑
k=0

xk

k!

)
= 1−

x100

100!
+ o(x100)

Exercice 9.   # Déterminer un équivalent simple, lorsque x tend vers 0, de
2

x
−

1

sin(x)
−
1

sh(x)
. En déduire

la limite, quand x tend vers 0+, de
2

x
−

1

sin(x)
−

1

sh(x)

Correction
Ici, il ne s’agit pas directement de développements limités. Il faut d’abord se ramener à une situation
qui permet les dl. On écrit

2

x
−

1

sin(x)
−

1

sh(x)
=
1

x

(
2−

x

sin(x)
−

x

sh(x)

)
=
1

x

(
2−

(
sin(x)

x

)−1
−
(
sh(x)

x

)−1)
.

Or,
sin(x)

x
=
x − x3

6 +
x5

120 + o(x
5)

x
= 1−

x2

6
+ +

x4

120
+ o(x4), donc

(
sin(x)

x

)−1
=

(
1−

x2

6
+

x4

120
+ o(x4)

)−1
= 1 +

x2

6
−

x4

120
+
x4

36
+ o(x4)

= 1 +
x2

6
+
7x4

360
+ o(x4)

et, de même, en faisant attention au changement de signe,
(
sh(x)

x

)−1
= 1−

x2

6
+
7x4

360
+ o(x4), donc

2−
(
sin(x)

x

)−1
−
(
sh(x)

x

)−1
= 2−

(
1−

x2

6
+
7x4

360

)
−
(
1−

x2

6
+
7x4

360

)
+ o(x4)

= −
7

180
x4 + o(x4),

donc

2

x
−

1

sin(x)
−

1

sh(x)
= −

7

180
x3 + o(x3),

de limite nulle quand x tend vers 0.

Exercice 10.   # En s’intéressant d’abord au dl de f ′(x), déterminer la dl à l’ordre 4 en 0 de f (x) où

f : x 7→ ln
(
tan
(x
2
+
π

4

))
.
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Correction
Dérivons f :

f ′(x) =
1

2 cos2
(
x
2 +

π
4

)
tan
(
x
2 +

π
4

) = 1

2 cos
(
x
2 +

π
4

)
sin
(
x
2 +

π
4

) .
Or, pour tout réel θ, 2 cos(θ) sin(θ) = sin(2θ), d’où

f ′(x) =
sin
(
x + π

2

) = 1

cos(x)
= 1 +

x2

2
+ o(x3),

d’où, en intégrant,

ln
(
tan
(x
2
+
π

4

))
= x +

x3

6
+ o(x4).

Exercice 11.   # Déterimner les limites suivantes

1. lim
x→0

ex + cos(x)− x
sin(x)− ln(1 + x)

Correction

Le numérateur tend vers 2 en 0, le dénominateur vers 0, et sin(x)− ln(1+ x) = x −
(
x −

x2

2

)
+

o(x2) ∼
x→0

x2

2
, donc lim

x→0

ex + cos(x)− x
sin(x)− ln(1 + x) = +∞.

2. lim
x→+∞

(
3
√
x3 + 3x2 + 1− 3

√
x3 − 1

)x2
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Correction

Par l’écriture exponentielle, on est ramenés à considérer

x2 ln
(
3
√
x3 + 3x2 + 1− 3

√
x3 − 1

)
.

Écrivons d’abord

3
√
x3 + 3x2 + 1− 3

√
x3 − 1 = x 3

√
1 +
3

x
+
1

x3
− x 3

√
1−

1

x3
.

Or, 3
√
1 + u =

u→0
1 +

u

3
−
u2

9
+ o(u). Donc, en faisant un développement asymptotique à l’ordre

o

(
1

x2

)
, on obtient

3

√
1 +
3

x
+
1

x3
− 3

√
1−

1

x3
=

x→+∞
1 +
1

x
−
1

x2
− 1 + o

(
1

x2

)
=

x→+∞

1

x
−
1

x2
+ o

(
1

x2

)
,

Donc

3
√
x3 + 3x2 + 1− 3

√
x3 − 1 =

x→+∞
1−
1

x
+ o

(
1

x

)
,

Donc
ln
(
3
√
x3 + 3x2 + 1− 3

√
x3 − 1

)
∼

x→+∞
−
1

x
,

donc
x2 ln

(
3
√
x3 + 3x2 + 1− 3

√
x3 − 1

)
∼ −x −→

x→+∞
−∞.

En passant les limites à l’exponentielle, on en déduit que la limite recherchée est 0.

3. lim
x→2

√
x −
√
2

x
1
3 − 2 13

4. lim
n→+∞

(
a1/n + b1/n

2

)n
Correction

On passe par la forme exponentielle :(
a1/n + b1/n

2

)n
= exp

(
n ln

(
a1/n + b1/n

2

))
.

Or, a1/n = 1 +
ln(a)

n
+ o(1/n) et a1/n = 1 +

ln(b)

n
+ o(1/n), donc

a1/n + b1/n

2
= 1 +

ln(ab)

2n
+ o

(
1

n

)
.

donc

n ln

(
a1/n + b1/n

2

)
∼
ln(ab)

2
,

donc (
a1/n + b1/n

2

)n
−→
n→+∞

eln(ab)/2 =
√
ab.

Exercice 12. Détermination d’équivalents.   #
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1. Déterminer un équivalent en
π

2
de f (x) = cos(cos x)− sin x .

2. Déterminer un équivalent en +∞ de f (x) =
(
ln(x + 1)

ln x

)x
− 1.

Correction

On écrit que (
ln(x + 1)

ln x

)x
− 1 = ex ln(

ln(x+1)

ln x ) − 1

Mais

x

(
ln(x + 1)

ln x

)
= x ln

(
ln(x) + ln

(
1 + 1

x

)
ln x

)

= x ln

(
1 +
ln
(
1 + 1

x

)
ln x

)

∼
x→0

x
ln
(
1 + 1

x

)
ln x

∼
x→0

1

ln(x)
−→
x→+∞

0,

donc

ex ln(
ln(x+1)

ln x ) − 1 ∼
x→+∞

x ln

(
ln(x + 1)

ln x

)
∼

x→+∞

1

ln(x)

Exercice 13.   # On définit f : x 7→
Arctan x

x
pour tout réel x non nul.

1. Montrer que f se prolonge par continuité en 0 et préciser la valeur à choisir pour f (0).

Correction

On sait que
Arctan(x)

x
∼
x→0

x

x
= 1, donc f (x) −→

x→0
1 donc f est prolongeable par continuité en 0,

avec la valeur 0 en 0.

2. Montrer que f , ainsi prolongée, est de classe C1 sur R.

Correction

Il s’agit d’utiliser le théorème du prolongement de la classe C 1. La fonction f est de classe C 1 sur
R∗, continue sur R, et pour x 6= 0,

f ′(x) =
x
1+x2 − Arctan(x)

x2
=
x − (1 + x2)Arctan(x)

(1 + x2)x2
.

Or, Arctan(x) =
x→0

x −
x3

3
+ o(x3), donc

x − (1 + x2)Arctan(x) =
x→0

x − (1 + x2)
(
x −

x3

3

)
+ o(x3) ∼

x→0
−
2

3
x3.

Donc

f ′(x) ∼
x→0

− 23x
3

(1 + x2)x2
−→
x→0
0,
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donc, par le théorème de prolongement du caractère C 1, f est de classe C 1 sur R et f ′(0) = 0.

3. Étudier la parité, les variations et les limites en ±∞ de f . Dessiner le graphe de f .

Correction

f est clairement paire, et sur R+. Pour les variations, il faut étudier le signe de g : x 7→ x − (1 +
x2)Arctan(x). Dérivons (encore !) g :

g′ : x 7→ 1− 2xArctan(x)− 1 = −2xArctan(x) 6 0,

donc g décroît sur R. Comme g(0) = 0, g est positive sur R+ et négative sur R+. Donc f est
croissante sur R− et décroissante sur R+.
Enfin, f (x) −→

x→±∞
0. D’où le graphe

4. Donner un développement asymptotique de f (x) en+∞ sous la forme a0+
a1
x
+
a2
x2
+
a3
x3
+o

(
1

x3

)
.

Correction

Là, il faut utiliser le fait que Arctan(x) =
π

2
− Arctan

1

x
lorsque x > 0. On a alors

f (x) =
π
2 − Arctan

1
x

x

=
x→+∞

π

2x
−
1

x

(
1

x
−
1

3x3
+ o

(
1

x3

))
=
x→0

π

2x
−
1

x2
+
1

3x4
+ o

(
1

x4

)
.

Exercice 14.   G# Pour tout a ∈ R∗+, on considère la fonction fa : x ∈ R 7−→ a(a
x ).

1. Soit a ∈ R∗+. Montrer que fa est de classe C∞ et donner l’expression de f ′a et f ′′a . Montrer que si
a > 1, f ′′a ne s’annule pas et que si a < 1, f ′′a s’annule en un unique point que l’on notera xa et dont on
déterminera l’expression explicite en fonction de a.

2. Soit a ∈]0, 1 [ . Calculer f (3)a (xa). En déduire que xa est le paramètre d’un point d’inflexion du graphe
de fa.

3. Déterminer le lieu des points d’inflexion du graphe de la fonction fa lorsque a varie dans R∗+.

Exercice 15.   # Étudier l’équation de la tangente ainsi que la position relative de la courbe d’équation
y = (ch(x))

1
x , au point d’abscisse 0.
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Correction
Il suffit de faire un développement limité en 0 de l’expression considérée : On écrit que (ch(x))

1
x = e

ln(ch(x))

x .

Or, ch(x) = 1 +
x2

2
+
x4

24
+ o(x4), donc

ln(ch(x)) =
x2

2
+
x4

24
−
x4

8
+ o(x4) =

x2

2
−
x4

12
+ o(x4),

donc

e
ln(ch(x))

x = e
x
2
− x3

12
+o(x3)

= 1 +
x

2
+
x2

8
+
x3

48
−
x3

12
+ o(x3),

= 1 +
x

2
+
x2

8
−
x3

16
+ o(x3),

donc la tangente à la courbe en 0 a pour équation y = 1 +
x

2
et la courbe est localement au-dessus de

sa tangente car (ch(x))
1
x −

x

2
∼
x2

8
.

Exercice 16.   # Étudier les asymptotes éventuelles en +∞ des courbes représentatives des fonctions
suivantes, ainsi que la position relative de la courbe par rapport à son asymptote :

1. f : x 7→ (x + 1)e
1
x .

Correction

Pour traiter concrètement ce genre de problème, mieux vaut effectuer un développement asymp-

totique de l’expression plutôt que d’étudier
f (x)

x
:

f (x) =
x→+∞

(x + 1)

(
1 +
1

x
+ o

(
1

x

))
= x + 1 + 1 +

1

x
+ o

(
1

x

)
= x + 2 +

1

x
+ o

(
1

x

)
Donc la courbe de f a pour asymptote la droite d’équation y = x+2 et comme f (x)−(x+2) ∼

x→+∞
1

x
, Cf est au-dessus de son asymptote en +∞.

2. g : x 7→ 3
√
(x2 − 1)(x + 2).

Correction
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De même, on essaie de faire un développement asymptotique :

g(x) = 3
√
(x2 − 1)(x + 2)

=
3
√
x3 + 2x2 − x − 2

= x

(
1 +
2

x
−
1

x2
−
2

x3

) 1
3

=
x→+∞

x

(
1 +
2

x
−
1

x2
+ o(x2)

) 1
3

=
x→+∞

x

(
1 +
1

3

(
2

x
−
1

x2

)
−
4

9x2
+ o

(
1

x2

))
=

x→+∞
x +
2

3
−
7

9x
+ o

(
1

x

)

Donc la droite d’équation y = x+
2

3
est asympote à Cg et Cg est sous son asymptote au voisinage

de +∞.

Exercice 17. Le retour de la Suite définie implicitement.   #

1. Pour tout n ∈ N, justifier que l’équation
x + ex = n

possède une unique solution xn ∈ R.

Correction

Soit f la fonction définie sur R par f (x) = x+ex . La fonction f est continue, croissante strictment,
tend vers −∞ en −∞, vers +∞ en +∞, donc d’après le théorème des valeurs intermédiaires
strictement monotone aux limites, il existe une unique solution à l’équation x + ex = n.

2. Déterminer la limite de (xn) puis un équivalent simple de xn.

Correction

Pour tout entier n, f (xn) = n < n + 1 = f (xn+1) et, par croissance de f , (xn) est croissante.
Donc, d’après le théorème de la limite monotone, elle converge ou tend vers +∞. Elle ne peut
converger, car si elle convergeait vers `, on aurait xn + exn −→̀, absurde car xn + exn −→

n→+∞
+∞.

Donc xn −→
+
∞. Or, par croissances comparées, xn = o(exn), donc xn+exn ∼ exn , donc exn ∼ n. n

tendant vers une limite différente de 1, on peut composer les équivalents par ln, d’où xn ∼ ln(n).

3. Déterminer un équivalent de xn − ln(n).

Correction

On cherche un équivalent de xn − ln(n). Remarquons que

exn−ln(n) = exne− ln(n) =
exn

n
.

Or, xn + exn = n, i.e.
exn

n
=
n − xn
n

= 1−
xn
n
.
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Donc
xn − ln(n) = ln

(
1−

xn
n

)
.

Or,
xn
n
∼
ln(n)

n
−→
+∞
0, donc

xn − ln(n) ∼ −
xn
n
∼
− ln(n)
n

.

Exercice 18. La vengeance de la suite définie implicitement.   G# On considère pour tout entier n > 1,
l’unique solution un ∈ [0, 1] de l’équation xn + xn−1 + · · · + x = 1. Justifier l’existence de un, donner la
monotonie de (un)n>1 et déterminer sa limite `. Donner un équivalent simple de un − `.
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