MPSI1 Pasteur 2025-2026 DM12

DM12
Facultatif (la JPO, c’est prioritaire!), a rendre entre le 26 janvier et le
31 janvier
Formules possibles.
1. Formule 1, « bases » : Probleme 1.A, Probléme 2.A (2h)

2. Formule 2, « plus avancée en analyse » : Probléme 1.A et Probléeme 2 (3h)

3. Formule 3, « plus avancée en algébre » : Probléme 1 et Probléme 2.A (rq : les deux derniéres questions
du probléme 1 sont difficiles et sont hors baréme pour cette formule) (3h)

4. Formule 4, compléte : faire les problémes 1 et 2. (4h)

Précisez en début de DM la formule choisie.

Probleme 1. Autour de la trace

A. La trace comme application linéaire

On note (E,p)1<ab<n la base canonique de .#,(K).
1. Démontrer que pour toutes matrices A et B dans .#,(K), Tr(AB) = Tr(BA).
2. Soit A € #,(K), (i,j) € [1, n]*>. Que vaut Tr(AE;;)?
3. Application. Soit A € .#,(K) telle que :

vYM e #,(K), Tr(AM) = 0.
Montrer que A est nulle. Pourquoi est-ce évident dans le cas ot K=R7?
On appelle forme linéaire sur .#,(K) toute application ¢ de .#,(K) dans K vérifiant :
V(A, B) € Mn(K)?, V(X 1) € K*, 9(AA+ uB) = Ap(A) + up(B).

4. Soit f une forme linéaire sur .#,(K). Montrer qu'il existe A € .#,(K) telle que pour tout M dans
My(K), f(M) =Tr(AM)

5. Soit 9 une forme linéaire sur .#,(K) vérifiant : V(A, B) € .#,(K)?, ¥(AB) = ¥(BA). Montrer qu'il
existe A € K tel que pour tout M dans .Z,(K), ¥ (M) = XTr(M).

B. Toute matrice de trace nulle est un commutateur

Notre but est d'établir le résultat suivant :

Soit M une matrice de trace nulle. Alors il existe (A, B) € #,(K) telles que M = AB — BA.

B-1. Le cas a diagonale nulle

6. Soit M = (mjj)i<ij<n €t D la matrice diagonale de coefficients diagonaux (1,2, ..., n). Donner le
coefficient (i, ) de MD — DM.

7. Soit A une matrice carrée de diagonale nulle. Déterminer une matrice M telle que A= MD — DM.
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B-1l. Un résultat intermédiaire

d
soit de diagonale nulle.

Soit A = (i b> une matrice de trace nulle. On veut montrer qu'il existe P € GL,(K) tel que A = PlAP

8. Pourquoi est-ce évidentsia=07

9. Démontrer que I'une des trois matrices
1 a 0 b 1 a+b
0 ¢/J'"\1 d)'"\1 c+d

a . . _ N
C> est inversible. Montrer alors que P~*AP est a

est inversible.
. 1
10. Sans perte de généralité, on suppose que P = (O
diagonale nulle.

B-1l1l. Conclusion (partie délicate)

11. Démontrer par récurrence sur la dimension que toute matrice de trace nulle est semblable a une matrice
de diagonale nulle.
Indication. On prend A de trace nulle, A = (aj)1<i j<n- On suppose que les aj; ne sont pas tous égaux
(sinon c'est évident). On prend un i tel que a;; # aj+1,j+1. On considére le carré de diagonale aj;, aj+1,i+1

. , a b , ) .
de la matrice, que I'on note c d) Montrer que I'une des 3 matrices suivantes

309 B () B )

I,.1 O 0
est inversible. Puis, en prenant P I'une de ces matrices, considérer la matrice par blocs R = o P 0
0 0 Infifl

montrer qu'elle est dans GL,(R) et faire le produit R*AR.

12. Conclure au résultat désiré.
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Probleme 2. Meéthode d’Euler

A. Questions préliminaires

Les résultats établis dans cette partie pourront étre utilisés pour la suite. On établit d'abord la

[Proposition 1 (Egalité de Taylor—Lagrange)}

Soit ¢ une fonction deux fois dérivable d'un intervalle I dans R, a et b deux points de I. Alors il existe
/!
c entre a et b tel que p(b) = p(a) + ¢'(a)(b—a) + (pT(C)(b — a)2.

Pour la preuve, on suppose a < b mais elle s'adapte parfaitement au cas ot a > b.
On pose ¥ : x — p(x) — ¢'(a)(x — a).

_ )2
1. En considérant la fonction ¢ : x — 9P(x) — EZ — 32 ((b) —(a)), démontrer qu'il existe ¢ dans ]a, b]
2
tel que ¥"(c) = ———=(¥(b) — 9(a)). En déduire la proposition voulue.

(b—a)?

4‘ Correction

Considérons la fonction ( ainsi citée. Alors { est continue sur [a, b], dérivable sur ]a, b],

((a) = ¥(a) = o(a),

et
¢(b) = ¥(b) — (¥(b) — ¥(a)) = ¥(a),

donc, d'aprés le théoréme de Rolle, on dispose de d dans ]a, b[ tel que

¢'(d) =0.
Mais o )
N X—a

() =9 (x) - m(w(b) —9(a))

Donc ¢'(a) = ¥/'(a) = ¢'(a) — ¢'(a) = 0, donc, ¢’ étant continue sur [a, d], dérivable sur ]a, d|,
d’aprés le théoréme de Rolle, on dispose de ¢ dans |a, d[ tel que ¢"(¢) = 0, c’est-a-dire que

V'(©) = () — ¥(a)

On en déduit alors, comme 9" (c) = ¢”(c), que

(b—a)
2

@'(0) = $(6) ~ $(a) = 0(b) — &/ ()b 3) — (a).
Oou encore que )
0(b) = 0(a) + (b - a)/(a) + L= ()

D’ou le résultat a prouver !

2. Déduire de I'égalité de Taylor-Lagrange le fait qu'une fonction convexe deux fois dérivable est toujours
au-dessus de ses tangentes.
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Correction

Soit f une fonction convexe deux fois dérivable. Alors f” est positive. Doncsia € I et x € 1, il
existe ¢ entre a et x tel que

p"(c)

o(x) = p(a) + (x — a)¢'(a) + (x = a)* > p(a) + (x — a)¢'(a),

ce qui signifie exactement que la courbe de @ est au-dessus de sa tangente en a.

Pour notre deuxiéme résultat préliminaire, on considére une suite de réels (ax)«en, telle qu'il existe deux réels
strictement positifs A et B vérifiant, pour tout k dans N,

O0< a1 < (1+A).a + B.

3. Montrer que pour tout n dans N,

1+A)"—1 "M

< < n
O\an\(1+A) ao+ A A

B.

Correction

On démontre le résultat par récurrence! L'initialisation est évidente, car (1 + A)%ay +

(1+A)°—1B

——F B =a.
A 0

1+A)"-1
Pour I'hérédité, soit k dans N tel que 0 < ax < (1 + A)"ag + %

y B. Alors 0 < aky1 et

aky1 < Aac+B

1+A)"—1
A

A(l+A)a+ ((L+A)"-1)B+B

<A ((1 + A)"a0 + B> + B par hypothése de récurrence.

N

<AL+ A) a0+ (1+A)"B <[ (L+A) ™ ag + (1 +A)B.

(1+ A" —1

Notre but est donc de démontrer que (1 + A)" < A

. Or, on a les équivalences

(1+A)" < SAL+A)"<(1+ A" -1
S1+AQ+A"SA+A"+A(L+A)"

<1< (1+A)",

1+A)M* -1
A

ce qui est vrai. Donc| (1 + A)" < , d'oul I'hérédité et le résultat!

(1+ A" -1
A

Ensuite, on remarque que

(1+ A)" = e"A+A) < e | par I'inégalité In(1+ x) < x.

Ceci entraine la seconde inégalité.
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B. Description de la méthode

On cherche a approcher les solutions d’'une équation différentielle de la forme y'(t) = F(y(t)), o F est une
fonction dérivable, définie de R dans R, ou la fonction inconnue y est une fonction €' sur un intervalle [a, b]
ol a < b, a valeurs dans R.

Le schéma d’Euler a n + 1 points consiste a poser

b—a
e le pas de la méthode h, = P

e les temps discrétisés (t, «)o<k<n définis par t,x = a+ khp,

e |a suite des valeurs approchées de la solution (y, «)o<k<n définie par y,o = y(a) et pour tout k dans

[L. 1],
Ynk = Ynk-1 + hnF(yn,kfl)-

Cette formule s'explique simplement : y, x est censé étre une approximation de y(t, ). Ainsi,

- _ t — y(th k- t, — y(th k-
Yn k Yn k-1 ~ )/( n,k) )/( n,k 1) ~ )/( n,k) )/( n,k 1) ’ij/(tn,k—l) ~ F(J/(tn,k—l)) ~ F(Yn,k—l)-
hn hn tn,k - tn,k—l

4. Proposer un programme Python euler(F,a,b,y0,n) qui prend en arguments une fonction F, deux
flottants a<b, une condition initiale yO, un entier n et qui renvoie deux listes : la liste des temps
discrétisés et la liste des valeurs approchées de la solution.

On propose
1| def euler(F,a,b,y0,n):
2 T = [a]
S t a
4 Y = [y0]
5 y = y0
6 h = (b-a)/n
7 for i in range(n):
8 y =y + hxF(y)
9 t = t+h
10 Y.append(y)
11 T.append(t)
12 return T,Y

C. Preuve de la convergence

Dans cette partie, y est une solution €' de I'équation différentielle. On suppose de plus que F est €, de
dérivée bornée par K > 0.

5. Démontrer que y est de classe €2, que y' et y” sont bornées sur [a, b].

On note C = sup |y/(t)] et D= sup |y"(1)].
tela,b] tela,b]

Déja, comme y'(t) = F(y(t)) pour tout t, comme y est €* sur [a, b] et F est € sur R, y est
€ sur [a, b], donc y est €2 sur [a, b].

y' est donc continue sur le segment [a, b] donc, par le théoréme des bornes atteintes, elle est
bornée et atteint ses bornes.
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De méme, y” est continue sur le segment [a, b] donc, par le théoréme des bornes atteintes, elle
est bornée et atteint ses bornes.

6. Démontrer que V(w, z) € R?, |F(w) — F(2)| < K|w — z|.

Correction

Comme F est dérivable sur R et que |F’| est majorée par K, on en déduit, par I'inégalité des
accroissements finis, que pour tous w et z dans R, |F(w) — F(z)| < K|w — z|.

On admettra aussi que pour tous s et t dans [a, b],
ly(s) =y () < Cls = t] et |y'(s) —y'(1)| < DIs — t.

7. On fixe n dans N* et k € [0, n — 1]. Démontrer que

h2
‘y(tn,kJrl) - Yn,k+1| < (hnK + ]-) |y<tn,k) - yn,k| + ?HD

On pourra utiliser la question

Correction

On utilise la relation de récurrence! On sait que

Yik+1 = Ynk + hoF (Vo k)

et, par la formule de Taylor-Lagrange, il existe c entre t, x et t,x+1 tel que

h2
}/(tn,kJrl) = Y(tn,k) + hny/(tn,k) + ?ny”(c)-
Ainsi,

2

h
‘y (tn,k+1) — Ynkt1| = ‘y(tn,k) + hny/(tn,k) =+ Eny”(c) - (er,k + hnF(Yn,k))‘

2
- \ym,k) ~ Yk i (FOtni) = FOne)) + 2(c)

/72
< |y(tak) = Yokl + ha |F(Y(tn,k)) — F(Yni)l + 7n|y//(c)‘
h2
< |y(tn,k) - Yn,k| + haK |y(tn,k) - J/n,k| + 3HD

h2
< (hn-K + 1) |y(tn,k) — Yokl + EHD-

D’ou le résultat désiré!

On note alors I'erreur d'ordre n
err, = max — t, .
n o<k<n |yn,k )/( n,k)|

8. Démontrer que pour tout k dans [0, n],

eK(b—a) -1 ﬁ
K 2

err, <
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Correction

De la question précédente et la question 3, on déduit que pour tout k dans [0, n — 1],

h2
|y (tn,k+1) - yn,k+1| < (hnK + ]-) |y<tn,k) - yn,k| + EHD.

donc, pour tout k dans [0, n],

enh”K -1 h2 eK(bfa) —1h
tok) — < ey (tho) — +—ID="
Iy (tak) = Yokl < Iy (tn0) — Ynol K > K >
car la méthode d'Euler est initialisée en posant y,o = y(a). Le majorant précédent étant indépen-
dant de k, on en déduit une majoration de I'erreur comme désiré !

9. En déduire que pour tout k dans [0, n — 1],

eK(bfa) -1
h K

Ynk+1 — Ynk

D+ C.
tn,k+1 - tn,k

On pourra écrire que |Yp k+1 — Yok = Yak+1 — Y (k1) + Y (taks1) = Y(tak) +y(tnk) — Yokl

Correction

Soit k dans [0, n — 1]. Alors

|yn,k+1 - )/n,k| = |yn,k+1 - )/(tn,kJrl) + y(tn,kJrl) - y(tn,k) + )/(tn,k) - yn,k|
< |.Vn,k+1 - Y(tn,k+1)‘ + |y(tn,k+1) - )/(tn,k)‘ + |Y(tn,k) - )/n,k|
< 2erry + |y (tnk+1) — Y (Enk)l

K(b—a) _
e 1h
3D+ Cltnsesr = tasl-

N

Ainsi, en divisant par |ty x+1 — th k|, €t comme |t, k11 — thk| = hn, On obtient le résultat désiré.

On note de plus g, la fonction définie ainsi :
e pour tout k dans [0, n] gn(tnk) = Vnk
e g, est affine sur chaque segment [ty k, thk+1].
10. Démontrer qu'il existe une constante M telle que pour tous n € N*, k € [0, n — 1], pour tous (r,s) €

[tn,kv tn,kJrl]y
19n(r) = gn(s)| < M|r —s|.

Correction

Comme g, est affine sur [ty k, thk+1], pour tous (r,s) € [tnk, thk+1] avec r # s,

gn(r) — gn(s) _ In(tnk+1) = gn(tnk) _ Ynk+1 = Ynk

r—s tn,k+1 - tn,k zi'n,kJrl - tn,k

C'est simplement la pente de la fonction affine! Ainsi, le résultat est immédiat par la question
K(b—a) _
e 1
précédente, avec M = TD +C.
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11. Démontrer que pour tout x dans [a, b], g,(x) — y(x) " 0.
n——+o0

On pourra, pour x et n fixés, considérer k tel que x € [ty k, tnk+1]-

Correction

Soit x dans [a, b]. Soit n € N*.
Soit k un entier tel que x € [ty k, thk+1]. Alors

190 (X) =y ()| = 19gn(x) = gn(tak) + Gn(tnk) — ¥ (tak) + ¥(tak) — y(X)|
< 1gn(X) = gn(ta i)l + 1gn(tak) = y(tas)l + |y (tok) — y(X)|
< MIx — thk| +errp + Clthx — X|
< (M+C)h, +err, — 0,

n—-+oo

d’ou le résultat désiré!
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