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DM12
Facultatif (la JPO, c’est prioritaire !), à rendre entre le 26 janvier et le

31 janvier

Formules possibles.

1. Formule 1, « bases » : Problème 1.A, Problème 2.A (2h)

2. Formule 2, « plus avancée en analyse » : Problème 1.A et Problème 2 (3h)

3. Formule 3, « plus avancée en algèbre » : Problème 1 et Problème 2.A (rq : les deux dernières questions
du problème 1 sont difficiles et sont hors barème pour cette formule) (3h)

4. Formule 4, complète : faire les problèmes 1 et 2. (4h)

Précisez en début de DM la formule choisie.

Problème 1. Autour de la trace

A. La trace comme application linéaire
On note (Ea,b)16a,b6n la base canonique de Mn(K).

1. Démontrer que pour toutes matrices A et B dans Mn(K), Tr(AB) = Tr(BA).
2. Soit A ∈Mn(K), (i , j) ∈ J1, nK2. Que vaut Tr(AEi j) ?

3. Application. Soit A ∈Mn(K) telle que :

∀M ∈Mn(K), Tr(AM) = 0.

Montrer que A est nulle. Pourquoi est-ce évident dans le cas où K = R ?

On appelle forme linéaire sur Mn(K) toute application ϕ de Mn(K) dans K vérifiant :

∀(A,B) ∈Mn(K)2, ∀(λ, µ) ∈ K2, ϕ(λA+ µB) = λϕ(A) + µϕ(B).

4. Soit f une forme linéaire sur Mn(K). Montrer qu’il existe A ∈ Mn(K) telle que pour tout M dans
Mn(K), f (M) = Tr(AM)

5. Soit ψ une forme linéaire sur Mn(K) vérifiant : ∀(A,B) ∈ Mn(K)2, ψ(AB) = ψ(BA). Montrer qu’il
existe λ ∈ K tel que pour tout M dans Mn(K), ψ(M) = λTr(M).

B. Toute matrice de trace nulle est un commutateur
Notre but est d’établir le résultat suivant :

Soit M une matrice de trace nulle. Alors il existe (A,B) ∈Mn(K) telles que M = AB − BA.

B-I. Le cas à diagonale nulle

6. Soit M = (mi j)16i ,j6n et D la matrice diagonale de coefficients diagonaux (1, 2, . . . , n). Donner le
coefficient (i , j) de MD −DM.

7. Soit A une matrice carrée de diagonale nulle. Déterminer une matrice M telle que A = MD −DM.
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B-II. Un résultat intermédiaire

Soit A =
(
a b

c d

)
une matrice de trace nulle. On veut montrer qu’il existe P ∈ GL2(K) tel que A = P−1AP

soit de diagonale nulle.

8. Pourquoi est-ce évident si a = 0 ?

9. Démontrer que l’une des trois matrices(
1 a

0 c

)
,

(
0 b

1 d

)
,

(
1 a + b

1 c + d

)
est inversible.

10. Sans perte de généralité, on suppose que P =
(
1 a

0 c

)
est inversible. Montrer alors que P−1AP est à

diagonale nulle.

B-III. Conclusion (partie délicate)

11. Démontrer par récurrence sur la dimension que toute matrice de trace nulle est semblable à une matrice
de diagonale nulle.
Indication. On prend A de trace nulle, A = (ai j)16i ,j6n. On suppose que les ai i ne sont pas tous égaux
(sinon c’est évident). On prend un i tel que ai i 6= ai+1,i+1. On considère le carré de diagonale ai i , ai+1,i+1
de la matrice, que l’on note

(
a b

c d

)
. Montrer que l’une des 3 matrices suivantes

(
1 a

0 c

)
,

(
0 b

1 d

)
,

(
1 a + b

1 c + d

)

est inversible. Puis, en prenant P l’une de ces matrices, considérer la matrice par blocs R =

Ii−1 0 0

0 P 0

0 0 In−i−1

,

montrer qu’elle est dans GLn(R) et faire le produit R−1AR.

12. Conclure au résultat désiré.
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Problème 2. Méthode d’Euler

A. Questions préliminaires
Les résultats établis dans cette partie pourront être utilisés pour la suite. On établit d’abord la

Proposition 1 (Égalité de Taylor-Lagrange)
Soit ϕ une fonction deux fois dérivable d’un intervalle I dans R, a et b deux points de I. Alors il existe

c entre a et b tel que ϕ(b) = ϕ(a) + ϕ′(a)(b − a) +
ϕ′′(c)

2
(b − a)2.

Pour la preuve, on suppose a < b mais elle s’adapte parfaitement au cas où a > b.
On pose ψ : x 7→ ϕ(x)− ϕ′(a)(x − a).

1. En considérant la fonction ζ : x 7→ ψ(x)−
(x − a)2

(b − a)2 (ψ(b)−ψ(a)), démontrer qu’il existe c dans ]a, b[

tel que ψ′′(c) =
2

(b − a)2 (ψ(b)− ψ(a)). En déduire la proposition voulue.

Correction

Considérons la fonction ζ ainsi citée. Alors ζ est continue sur [a, b], dérivable sur ]a, b[,

ζ(a) = ψ(a) = ϕ(a),

et
ζ(b) = ψ(b)− (ψ(b)− ψ(a)) = ψ(a),

donc, d’après le théorème de Rolle, on dispose de d dans ]a, b[ tel que

ζ′(d) = 0.

Mais

ζ′(x) = ψ′(x)−
2(x − a)
(b − a)2 (ψ(b)− ψ(a))

Donc ζ′(a) = ψ′(a) = ϕ′(a) − ϕ′(a) = 0, donc, ζ′ étant continue sur [a, d ], dérivable sur ]a, d [,
d’après le théorème de Rolle, on dispose de c dans ]a, d [ tel que ζ′′(c) = 0, c’est-à-dire que

ψ′′(c) =
2

(b − a)2 (ψ(b)− ψ(a))

On en déduit alors, comme ψ′′(c) = ϕ′′(c), que

(b − a)2

2
ϕ′′(c) = ψ(b)− ψ(a) = ϕ(b)− ϕ′(a)(b − a)− ϕ(a),

ou encore que

ϕ(b) = ϕ(a) + (b − a)ϕ′(a) +
(b − a)2

2
ϕ′′(c).

D’où le résultat à prouver !

2. Déduire de l’égalité de Taylor-Lagrange le fait qu’une fonction convexe deux fois dérivable est toujours
au-dessus de ses tangentes.
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Correction

Soit f une fonction convexe deux fois dérivable. Alors f ′′ est positive. Donc si a ∈ I et x ∈ I, il
existe c entre a et x tel que

ϕ(x) = ϕ(a) + (x − a)ϕ′(a) +
ϕ′′(c)

2
(x − a)2 > ϕ(a) + (x − a)ϕ′(a),

ce qui signifie exactement que la courbe de ϕ est au-dessus de sa tangente en a.

Pour notre deuxième résultat préliminaire, on considère une suite de réels (ak)k∈N, telle qu’il existe deux réels
strictement positifs A et B vérifiant, pour tout k dans N,

0 6 ak+1 6 (1 + A).ak + B.

3. Montrer que pour tout n dans N,

0 6 an 6 (1 + A)
na0 +

(1 + A)n − 1
A

B 6 enAa0 +
enA − 1
A

B.

Correction

On démontre le résultat par récurrence ! L’initialisation est évidente, car (1 + A)0a0 +
(1 + A)0 − 1

A
B = a0.

Pour l’hérédité, soit k dans N tel que 0 6 ak 6 (1 + A)na0 +
(1 + A)n − 1

A
B. Alors 0 6 ak+1 et

ak+1 6 A.ak + B

6 A

(
(1 + A)na0 +

(1 + A)n − 1
A

B

)
+ B par hypothèse de récurrence.

6 A.(1 + A)na0 + ((1 + A)
n − 1)B + B

6 A(1 + A)na0 + (1 + A)
nB 6 (1 + A)n+1a0 + (1 + A)

nB.

Notre but est donc de démontrer que (1 + A)n 6
(1 + A)n+1 − 1

A
. Or, on a les équivalences

(1 + A)n 6
(1 + A)n+1 − 1

A
⇔ A(1 + A)n 6 (1 + A)n+1 − 1

⇔ 1 + A.(1 + A)n 6 (1 + A)n + A.(1 + A)n

⇔ 1 6 (1 + A)n,

ce qui est vrai. Donc (1 + A)n 6
(1 + A)n+1 − 1

A
, d’où l’hérédité et le résultat !

Ensuite, on remarque que

(1 + A)n = en ln(1+A) 6 enA par l’inégalité ln(1 + x) 6 x.

Ceci entraîne la seconde inégalité.
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B. Description de la méthode

On cherche à approcher les solutions d’une équation différentielle de la forme y ′(t) = F (y(t)), où F est une
fonction dérivable, définie de R dans R, où la fonction inconnue y est une fonction C 1 sur un intervalle [a, b]
où a < b, à valeurs dans R.

Le schéma d’Euler à n + 1 points consiste à poser

• le pas de la méthode hn =
b − a
n

,

• les temps discrétisés (tn,k)06k6n définis par tn,k = a + khn,

• la suite des valeurs approchées de la solution (yn,k)06k6n définie par yn,0 = y(a) et pour tout k dans
J1, nK,

yn,k = yn,k−1 + hnF (yn,k−1).

Cette formule s’explique simplement : yn,k est censé être une approximation de y(tn,k). Ainsi,

yn,k − yn,k−1
hn

≈
y(tn,k)− y(tn,k−1)

hn
≈
y(tn,k)− y(tn,k−1)
tn,k − tn,k−1

≈ y ′(tn,k−1) ≈ F (y(tn,k−1)) ≈ F (yn,k−1).

4. Proposer un programme Python euler(F,a,b,y0,n) qui prend en arguments une fonction F, deux
flottants a<b, une condition initiale y0, un entier n et qui renvoie deux listes : la liste des temps
discrétisés et la liste des valeurs approchées de la solution.

Correction

On propose

1 de f e u l e r (F , a , b , y0 , n ) :
2 T = [ a ]
3 t = a
4 Y = [ y0 ]
5 y = y0
6 h = (b−a )/ n
7 f o r i i n range ( n ) :
8 y = y + h∗F( y )
9 t = t+h

10 Y. append ( y )
11 T. append ( t )
12 r e t u r n T,Y

C. Preuve de la convergence

Dans cette partie, y est une solution C 1 de l’équation différentielle. On suppose de plus que F est C 1, de
dérivée bornée par K > 0.

5. Démontrer que y est de classe C 2, que y ′ et y ′′ sont bornées sur [a, b].
On note C = sup

t∈[a,b]
|y ′(t)| et D = sup

t∈[a,b]
|y ′′(t)|.

Correction

Déjà, comme y ′(t) = F (y(t)) pour tout t, comme y est C 1 sur [a, b] et F est C 1 sur R, y ′ est
C 1 sur [a, b], donc y est C 2 sur [a, b].
y ′ est donc continue sur le segment [a, b] donc, par le théorème des bornes atteintes, elle est
bornée et atteint ses bornes.
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De même, y ′′ est continue sur le segment [a, b] donc, par le théorème des bornes atteintes, elle
est bornée et atteint ses bornes.

6. Démontrer que ∀(w, z) ∈ R2, |F (w)− F (z)| 6 K|w − z |.

Correction

Comme F est dérivable sur R et que |F ′| est majorée par K, on en déduit, par l’inégalité des
accroissements finis, que pour tous w et z dans R, |F (w)− F (z)| 6 K|w − z |.

On admettra aussi que pour tous s et t dans [a, b],

|y(s)− y(t)| 6 C|s − t| et |y ′(s)− y ′(t)| 6 D|s − t|.

7. On fixe n dans N∗ et k ∈ J0, n − 1K. Démontrer que

|y (tn,k+1)− yn,k+1| 6 (hn.K+ 1) |y (tn,k)− yn,k |+
h2n
2
D

On pourra utiliser la question 1.

Correction

On utilise la relation de récurrence ! On sait que

yn,k+1 = yn,k + hnF (yn,k)

et, par la formule de Taylor-Lagrange, il existe c entre tn,k et tn,k+1 tel que

y(tn,k+1) = y(tn,k) + hny
′(tn,k) +

h2n
2
y ′′(c).

Ainsi,

|y (tn,k+1)− yn,k+1| =
∣∣∣∣y(tn,k) + hny ′(tn,k) + h2n2 y ′′(c)− (yn,k + hnF (yn,k))

∣∣∣∣
=

∣∣∣∣y(tn,k)− yn,k + hn (F (y(tn,k))− F (yn,k)) + h2n2 y ′′(c)
∣∣∣∣

6 |y(tn,k)− yn,k |+ hn |F (y(tn,k))− F (yn,k)|+
h2n
2
|y ′′(c)|

6 |y(tn,k)− yn,k |+ hnK |y(tn,k)− yn,k |+
h2n
2
D

6 (hn.K+ 1) |y (tn,k)− yn,k |+
h2n
2
D.

D’où le résultat désiré !

On note alors l’erreur d’ordre n
errn = max

06k6n
|yn,k − y(tn,k)| .

8. Démontrer que pour tout k dans J0, nK,

errn 6
eK(b−a) − 1

K

hn
2
D
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Correction

De la question précédente et la question 3, on déduit que pour tout k dans J0, n − 1K,

|y (tn,k+1)− yn,k+1| 6 (hn.K+ 1) |y (tn,k)− yn,k |+
h2n
2
D,

donc, pour tout k dans J0, nK,

|y (tn,k)− yn,k | 6 enhnK |y (tn,0)− yn,0|+
enhnK − 1
hnK

h2n
2
D =

eK(b−a) − 1
K

hn
2
D,

car la méthode d’Euler est initialisée en posant yn,0 = y(a). Le majorant précédent étant indépen-
dant de k , on en déduit une majoration de l’erreur comme désiré !

9. En déduire que pour tout k dans J0, n − 1K,∣∣∣∣yn,k+1 − yn,ktn,k+1 − tn,k

∣∣∣∣ 6 eK(b−a) − 1K
D + C.

On pourra écrire que |yn,k+1 − yn,k | = |yn,k+1 − y(tn,k+1) + y(tn,k+1)− y(tn,k) + y(tn,k)− yn,k |.

Correction

Soit k dans J0, n − 1K. Alors

|yn,k+1 − yn,k | = |yn,k+1 − y(tn,k+1) + y(tn,k+1)− y(tn,k) + y(tn,k)− yn,k |
6 |yn,k+1 − y(tn,k+1)|+ |y(tn,k+1)− y(tn,k)|+ |y(tn,k)− yn,k |
6 2errn + |y(tn,k+1)− y(tn,k)|

6 2
eK(b−a) − 1

K

hn
2
D + C|tn,k+1 − tn,k |.

Ainsi, en divisant par |tn,k+1 − tn,k |, et comme |tn,k+1 − tn,k | = hn, on obtient le résultat désiré.

On note de plus gn la fonction définie ainsi :

• pour tout k dans J0, nK gn(tn,k) = yn,k
• gn est affine sur chaque segment [tn,k , tn,k+1].

10. Démontrer qu’il existe une constante M telle que pour tous n ∈ N∗, k ∈ J0, n − 1K, pour tous (r, s) ∈
[tn,k , tn,k+1],

|gn(r)− gn(s)| 6 M|r − s|.

Correction

Comme gn est affine sur [tn,k , tn,k+1], pour tous (r, s) ∈ [tn,k , tn,k+1] avec r 6= s,

gn(r)− gn(s)
r − s =

gn(tn,k+1)− gn(tn,k)
tn,k+1 − tn,k

=
yn,k+1 − yn,k
tn,k+1 − tn,k

.

C’est simplement la pente de la fonction affine ! Ainsi, le résultat est immédiat par la question

précédente, avec M =
eK(b−a) − 1

K
D + C.
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11. Démontrer que pour tout x dans [a, b], gn(x)− y(x) −→
n→+∞

0.

On pourra, pour x et n fixés, considérer k tel que x ∈ [tn,k , tn,k+1].

Correction

Soit x dans [a, b]. Soit n ∈ N∗.
Soit k un entier tel que x ∈ [tn,k , tn,k+1]. Alors

|gn(x)− y(x)| = |gn(x)− gn(tn,k) + gn(tn,k)− y(tn,k) + y(tn,k)− y(x)|
6 |gn(x)− gn(tn,k)|+ |gn(tn,k)− y(tn,k)|+ |y(tn,k)− y(x)|
6 M|x − tn,k |+ errn + C|tn,k − x |
6 (M + C)hn + errn −→

n→+∞
0,

d’où le résultat désiré !
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