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MPSI 1

Mathématiques
DS 06

Samedi 7 février – 8h-12h

• Durée : 4 heures.

— Prenez 10 minutes pour lire le sujet en entier et décider de la stratégie que vous adopterez.

— Prenez 10 minutes au moins à la fin des 4 heures pour vous relire !

• Toute calculatrice ou appareil électronique est interdit.

• Le sujet est composé d’un exercice et d’un problème.

• Consignes de présentations.

— Les pages doivent être numérotées.

— Les résultats doivent être mis en valeur (encadrés ou soulignés).

— Les questions doivent être numérotées. Une question non numérotée, c’est une question poten-
tiellement non corrigée.

— Les questions doivent être faites dans l’ordre : si vous admettez une question, laissez de la place
à l’endroit où elle est censée être pour y revenir ensuite. Changez de copie ou de page quand vous
changez de grande partie.

• À tout moment, vous pouvez admettre le résultat d’une question pour pouvoir continuer : il suffit de le
préciser clairement sur la copie.

• Si vous voyez ce qui semble être une erreur d’énoncé, indiquez-le sur la copie.

• Laissez de la place dans une marge à gauche pour pouvoir noter plus facilement le devoir.

• Une réponse fausse, si elle ne laisse pas paraître de calculs intermédiaires, compte 0 points ; avec calculs
intermédiaires elle peut rapporter quelques points.

� Bon courage ! �
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Exercice 1. De l’asymptotique, comme promis !.

1. Déterminer le développement limité à l’ordre 4 en 0 de
1

1− x2 ln(cos(x)).

2. Déterminer le développement limité à l’ordre 3 en π de
sin(x)

x
.

3. Montrer que f : x 7→
(
sin(x)

x

) 1
x

définie sur ]0, π[ se prolonge par continuité en 0.

Étudier la dérivabilité en 0. Dans le cas où la fonction est dérivable, déterminer la position relative de
la courbe et de sa tangente.

4. Soit g(x) = e
1
x

√
x2 + 1. Déterminer l’équation de l’asymptote à la courbe de g en +∞ et donner la

position relative de la courbe de g par rapport à cette asymptote au voisinage de +∞.

Problème : Autour de la méthode de Newton
Le but de ce problème est d’étudier une méthode d’analyse numérique utilisée pour déterminer le zéro d’une
fonction : la méthode de Newton. Dans la partie A, nous établissons deux résultats utiles pour la partie B,
dans laquelle nous étudions la méthode de Newton pour des fonctions et des polynômes. Dans la partie C,
nous en voyons une adaptation pour les matrices. Les parties B et C sont largement indépendantes.

A. Deux résultats d’analyse

A-I. Critère de D’Alembert

1. Soit (an)n∈N une suite de réels strictement positifs. On suppose que
an+1
an

−→
n→+∞

` ∈ [0, 1[. Démontrer

que pour tout α dans ]`, 1[, il existe C > 0 tel que an 6 Cαn à partir d’un certain rang. En déduire que
pour tout β dans ]`, 1[, an =

n→+∞
o(βn).

A-II. Égalité de Taylor-Lagrange

Soit n ∈ N et f une fonction de classe C n+1 sur un intervalle I. Soient a < b deux réels de I. Soit A le réel
défini par la relation

(b − a)n+1

(n + 1)!
A = f (b)− f (a)−

n∑
k=1

(b − a)k

k!
f (k)(a).

Soit ϕ la fonction définie par, pour tout x dans I,

ϕ(x) = f (b)− f (x)−
n∑
k=1

(b − x)k

k!
f (k)(x)−

(b − x)n+1

(n + 1)!
A.

2. Calculer ϕ(a), ϕ(b) et en déduire qu’il existe c dans ]a, b[ tel que

f (b) =

n∑
k=0

f (k)(a)

k!
(b − a)k +

f (n+1)(c)

(n + 1)!
(b − a)n+1.

3. En déduire notamment que si f est de classe C 2, il existe c ∈]a, b[ tel que

f (b) = f (a) + f ′(a)(b − a) +
f ′′(c)

2
(b − a)2.
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B. Méthode de Newton pour les fonctions

B-I. Premières propriétés

Soit f une fonction réelle, dérivable sur un intervalle I, s’annulant en un point a. On définit une suite (xn)n∈N
par x0 ∈ I et, pour tout n dans N, xn+1 est le point d’intersection de la tangente à la courbe de f au point
d’abscisse xn et de l’axe des abscisses.

4. Démontrer que la suite (xk)k∈N définie par le procédé ci-dessus vérifie la relation de récurrence

∀k ∈ N, xk+1 = xk −
f (xk)

f ′(xk)
, et illustrer la méthode !

5. À titre d’exemple, donner l’expression du terme général de la suite (xk)k∈N quand f : x 7→ x2. Vérifier
qu’une telle suite converge bien vers 0, quel que soit le réel x0.

6. Démontrer que si a ∈ R et f : x 7→
1

x
− a, alors pour tout k dans N, xk+1 = xk(2− axk).

7. Démontrer que si f : x 7→ x3− 2x +2 et x0 = 0, alors la méthode de Newton ne converge pas. On fera
un dessin illustrant la situation.

B-II. Convergence de la méthode de Newton

On suppose ici que I = [a, b] où (a, b) sont deux réels tels que a < b. On suppose ici que f est une fonction
de classe C 2 sur [a, b], vérifiant

• f (a) < 0,

• f (b) > 0,

• ∀x ∈ [a, b], f ′(x) > 0,
• ∀x ∈ [a, b], f ′′(x) > 0.

8. Montrer que l’équation f (x) = 0 admet une unique solution dans ]a, b[, que l’on notera c .

On définit maintenant, pour tout x de [a, b], g(x) = x −
f (x)

f ′(x)
.

9. Démontrer que pour tout x dans [a, b], il existe αx compris entre x et c tel que

g(x)− c =
1

2

f ′′(αx)

f ′(x)
(x − c)2.

On définit alors, comme en première partie, la suite (xn)n∈N par{
x0 ∈ [a, b]
∀n ∈ N, xn+1 = g(xn).

10. Montrer que g est C 1 sur [a, b], et déterminer les variations de g.

11. Montrer que si x0 > c , alors (xn) est monotone et converge vers c . On a ainsi démontré une convergence
globale de la méthode de Newton.

12. Démontrer que, dans ce cas,

xn+1 − c ∼
n→+∞

1

2
(xn − c)2

f ′′(c)

f ′(c)
.

En déduire que pour tout β dans ]0, 1[, xn − c =
n→+∞

o(βn).
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B-III. Le cas polynomial

Cette partie est plus technique et sur un chapitre plus récent. N’hésitez pas à aller voir du côté des matrices
si vous le préférez.
Dans cette partie, on considère la méthode de Newton appliquée à un polynôme P :

P (X) =

r∏
k=1

(X − λi)mi .

où λ1 < · · · < λr . On suppose deg(P ) > 3.

13. Démontrer que les racines de P ′ et celles de P ′′ sont toutes dans [λ1, λr ].

14. En déduire que P est strictement positive, strictement croissante et strictement convexe sur ]λr ,+∞[.

On considère alors la suite (xn)n∈N définie par x0 > λr et, pour tout n dans N, xn+1 = g(xn), où g : x 7→

x −
P (x)

P ′(x)
.

15. Justifier que xn −→
n→+∞

λr .

On va maintenant étudier plus finement la vitesse de convergence de (xn)n∈N.

16. Démontrer que pour tout x différent de λ1, . . . , λr , on a

P ′(x)

P (x)
=

r∑
i=1

mi
x − λi

.

17. En déduire que, pour x > λr ,

g′(x) = 1−

(∑
i

mi
x − λi

)−2(∑
i

mi

(x − λi)2

)
−→
x→λr

1−
1

mr
.

18. En déduire que
xn+1 − λr
xn − λr

−→
n→+∞

1−
1

mr
, puis que, pour tout β dans

]
1−

1

mr
, 1

[
,

xn − λr =
n→+∞

o(βn).

C. Méthode de Newton-Schulz pour calculer l’inverse d’une matrice
Le but de cette partie est de comprendre comment adapter la méthode de Newton, a priori une méthode
d’analyse, à des objets beaucoup plus algébriques, à savoir les matrices !

C-I. Une norme sur Mn,p(R)

Soient n et p deux entiers naturels non nuls. On pose, pour tout M dans Mn,p(R), ‖M‖n,p =
√
Tr(MTM)

(où MT désigne la transposée de M et Tr désigne la trace). Si n et p sont fixés et qu’il n’y a pas d’ambiguïté,
on la note simplement ‖M‖.

On veut démontrer que l’application M 7→ ‖M‖ est une norme sur Mn,p(R), c’est-à-dire qu’elle vérifie les
hypothèses suivantes :

a. (positivité) ∀M ∈Mn,p(R), ‖M‖ > 0,
b. (homogénéité) ∀M ∈Mn,p(R), ∀λ ∈ R, ‖λM‖ = |λ|. ‖M‖,
c. (séparation) ∀M ∈Mn,p(R), ‖M‖ = 0⇔ M = 0n,

d. (inégalité triangulaire) ∀(M,N) ∈Mn,p(R)2, ‖M + N‖ 6 ‖M‖+ ‖N‖.

19. Démontrer que les propriétés a., b. et c. sont vraies.
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Pour démontrer l’inégalité triangulaire (propriété d.), on va démontrer l’inégalité de Cauchy-Schwarz :

∀(U, V ) ∈Mn,p(R)2, Tr(UT V ) 6 ‖U‖ ‖V ‖ .

On considère la fonction P : x 7→ ‖U + xV ‖2.
20. Exprimer P comme un polynôme de degré 2 en x .

21. En étudiant le signe de P , en déduire l’inégalité de Cauchy-Schwarz.

22. En déduire l’inégalité triangulaire.

23. Soient A, B dans Mn(R)2. Démontrer que si (A1, . . . , An) sont les colonnes de A et (B1, . . . , Bn) sont

celles de B, alors ‖AB‖2n,n =
n∑
i=1

n∑
j=1

Tr(ATi Bj)
2.

24. En déduire que lorsque l’on considère des matrices carrées, la norme ‖·‖ est une norme d’algèbre,
c’est-à-dire que

∀(A,B) ∈Mn(R)2, ‖AB‖ 6 ‖A‖ ‖B‖ .

25. Démontrer, en cherchant un exemple pour n = 2, que l’on a en général pas d’égalité entre ‖AB‖ et
‖A‖ ‖B‖.

C-II. Convergence d’une suite de matrices

Nous sommes désormais armés pour parler de la convergence d’une suite de matrices. On dit qu’une suite
de matrices (Xk)k∈N ∈Mn(R)N converge vers une matrice A si elle converge « coefficient par coefficient »,
c’est-à-dire que

∀(i , j) ∈ J1, nK2, [Xk ]i j −→
k→+∞

[A]i j .

On s’autorise alors la notation
Xk −→

k→+∞
A.

26. Un exemple. Démontrer que si M =
(
1 1

0 1/2

)
, alors la suite (Mk)k∈N converge vers une matrice

dont on précisera les coefficients.

27. Démontrer que (Xk)k∈N ∈Mn(R)N converge vers A si, et seulement si ‖Xk − A‖ −→
k→+∞

0.

On admet les propositions suivantes : si (Xk)k∈N et (Yk)k∈N sont deux suites de matrices n × n convergeant
respectivement vers A et B, alors

Xk + Yk −→
k→+∞

A+ B et XkYk −→
k→+∞

A× B.

C-III. Une suite de matrices

Soit A ∈ Mn(R) une matrice inversible. On se demande si la relation trouvée à la question 6. peut nous
permettre de calculer l’inverse de A. On pose alors

X0 ∈Mn(R) et ∀k ∈ N, Xk+1 = Xk × (2In − AXk).

Notre but est de démontrer que, sous certaines conditions, la suite (Xk)k∈N converge vers A−1.
On pose (Wk)k∈N la suite des erreurs, i.e.

∀k ∈ N, Wk = In −XkA.

Plus Wk est petit, plus XkA est proche de In, donc plus Xk est proche de A−1.

28. Démontrer que (Wk)k∈N vérifie la relation de récurrence : ∀k ∈ N, Wk+1 = W 2k . En déduire une
expression de Wk pour tout k dans N.

29. En déduire que la méthode de Newton pour les matrices converge localement, c’est-à-dire qu’il existe
ε > 0 tel que pour tout X0 tel que ‖In −X0A‖ 6 ε, alors la suite (Xk)k∈N converge vers A−1.
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C-IV. Un cas de convergence

Dans cette dernière section, on suppose que A est une matrice à diagonale strictement dominante, c’est-à-dire
que

∀i ∈ J1, nK, |ai i | >
∑
16j6n
j 6=i

|ai j |.

30. Démontrer que A est inversible. On pourra utiliser qu’une matrice est inversible si et seulement si
∀X ∈Mn,1(R), AX = 0⇒ X = 0.

31. On suppose A à diagonale fortement dominante, c’est-à-dire que

∀i ∈ J1, nK, |ai i | > n
∑
16j6n
j 6=i

|ai j |.

Démontrer qu’en prenant

X0 =



1

a11
(0)

1

a22
. . .

(0)
1

ann


,

alors la suite (Xk)k∈N définie comme précédemment converge vers A−1.

Épilogue. En fait, on a convergence même dans le cas strictement dominant, mais c’est une autre histoire,
que l’on ne peut pas résoudre pour le moment... !
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