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TD 16
Polynbmes et fractions rationnelles

1 Exercices corrigés en classe

Exercice 1. Sur les racines de polynémes réels. Soir P un polynéme de R[X].

1. On suppose P scindé a racines simples. Montrer que P’ est scindé a racines simples.

4‘ Correction

Soit n le degré de P, a1,...,a, ses racines simples. Alors, pour tout / dans [1,n — 1], P est
continue sur [a;, aj+1], dérivable sur ]a;, ai+1[, P(a;) = P(ai+1) = 0 donc, d'apres le théoréme de
Rolle, on dispose de b; dans ]a;, a;+1[ tel que P'(b;) = 0. On a donc trouvé n—1 racines distinctes
de P'. Or, P’ est de degré n—1 : on a donc trouvé toutes les racines de P’, et P’ est donc scindé
a racines simples sur R.

2. En déduire que si P est scindé a racines simples sur R, alors P? + 1 est a scindé a racines simples sur
C.

Correction

Soit n le degré de P. On calcule (P? +1) = 2PP’. Comme P est scindé a racines simples sur R,
P’ aussi et P et P’ n'ont pas de racines en commun, donc 2PP" a n+n—1 = 2n — 1 racines.
Donc (P? + 1) est scindé a racines simples sur R. Or, P? 4 1 est strictement positif sur R donc
n'a aucune racine réelle. Donc P? +1 et (P? + 1)’ n'ont pas de racine en commun. Donc P? + 1
est a racines simples (et donc scindé a racines simples sur C).

3. Montrer que si P est scindé sur R (pas nécessairement a racines simples), P’ est scindé sur R.

4‘ Correction

Soit n le degré de P, soient a1, ..., a, les racines de P, mq, ..., m, leurs multiplicités. On sait que
P a n racines comptées avec multiplicités, i.e. que my + -+ 4+ m, = n.

e En appliquant le théoréme de Rolle entre a; et aj+1, pour tout i dans [1,r — 1], on obtient
r — 1 racines de P’, toutes distinctes de a1, ..., a,.

e Ensuite, soit / dans [1, r]. Comme a; est racine de multiplicité m; de P, a; est racine de
multiplicité m; — 1 de P’ (éventuellement nulle). D’ou, en les comptant avec multiplicités,

r r
Z(m,- — 1) racines comptées avec multiplicité, i.e. (Z m,-) — r = n—r racines comptées
i=1 o i=1

avec multiplicité.
Au final, on obtient n — r+r — 1 = n — 1 racines réelles comptées avec multiplicité pour P, qui
est de degré n — 1 : toutes les racines de P’ sont donc réelles, donc P’ est scindé sur R.

Exercice 2. Soient P dans C[X] et a, b deux complexes.

1. Déteminer le reste de la division euclidienne de P par (X — a)(X — b). On distinguera les cas a = b et

a#b.

Distinguons les cas :
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e sia=b, lereste est P(a) + (X — a)P'(a).

e si a # b, on écrit le reste comme aX + (3, et on a P(a) = aa+ B, P(b) = ab+ 3, donc
P — —
o (b) — P(a) et § = bP(a) aP(b)_
b—a b—a

2. En déduire le reste de la division euclidienne de (cos(#) + X sin(8))" par X2 + 1.

4‘ Correction

Ici, on remarque que si P(X) = (cos(0) + X'sin(8))", a =/ et b= —/, on est dans la situation de
la question précédente. On a alors P(a) = ¢ et P(b) = e ™. Donc le reste est aX + 3, avec

ein9 _ e—in@ eine _ e—in@
= — S . =sin(nh),
a D) 5 in(nd)

et
/'einG — (=i e—in9 einG e—in9
6= (21_ ) = +2 = cos(nb),

donc le reste de la division euclidienne de (cos() + X sin(6))" par X%+ 1 est sin(n8)X + cos(nf).

Exercice 3.
1. Déterminer tous les polyndmes P € R[X] pour lesquels pour tout n € N, P(n) = n?.
2. Déterminer tous les polyndmes P € R[X] pour lesquels pour tout n € N, P(n) = n> + (—1)".
Exercice 4. Soit (x,y,z) € (C*)>. On pose P = (X — x)(X — y)(X — 2).
1. Que vaut P si (x,y, z) est solution de
X+y+z=1
X +y?+22 =21
1 1 1
S+-+z=1
Xy z

2. En déduire I'ensemble des triplets (x, y, z) satisfaisant le systéme précédent.

Exercice 5. Polynémes de Tchebycheff. Soit n € N*,

1. Déterminer un polynéme T a coefficients réels de degré n vérifiant la propriété (x) :

V0 € R, T (cos(8)) = cos(nb). *)
2. Montrer qu'un polynéme vérifiant (*) est unique.
3. Déterminer, pour tout entier naturel n, le degré et le coefficient dominant de T,.
4. Montrer que Tpyo =2XTpy1 — Tn.
5. Calculer TQ le ,Tg ,Tg.
n—1

_ N 2k + 1)

6. Montrer que T, = 2"* kli[O(X —cos (6k)), ol B = %

Exercice 6. @ 0O Soient P € C[X] et n € N*. Montrer que si P (X") est divisible par X — 1, alors il I'est
aussi par X7 — 1.

Exercice 7. Soient A et B dans K[X].
1. Si C € K[X], déterminer tous les couples (U, V) tels que AU+ BV = C.
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2. Si A et B sont premiers entre eux montrer qu'il existe un unique couple U,V tels que AU + BV =1,
deg(U) < deg(B) et deg(V) < deg(A).

Exercice 8. Variations autout de X" — 1. 1. Montrer que si b divise a, alors X — 1 divise X7 — 1.

Correction

Ecrivons a = bq avec g € N. Alors

MO =1l = 30T — ) = (PO = 19 = (6 = IO a ) EEA) oo ),

2. Déterminer le reste dans la division euclidienne de X? — 1 par X® — 1 (en supposant b < a), en fonction
du quotient g et du reste r de la division euclidienne de a par b.

4‘ Correction

On écrit a = bg + r. Alors

Xaflsz(ﬁr*l
= XPotr — X'+ X" —1
= X"(X" —1)+ X"~ 1
= X"(X*—19) + X" 1
= X"(XP = 1)(XPD) 4 xb@=2) 4 . 4 )+ X" — 1,

donc le quotient de la division est X" (X2(971) 4 X2(9=2) et |e reste est X" — 1.

3. En déduire que (X7 — 1) A (XP —1) = X0 — 1.

Correction

Appliquons I'algorithme d'Euclide 8 X? — 1 et X? — 1. Soit (r,) la suite des restes de I'algorithme
d'Euclide appliqué a a et b, avec ry = a, 1 = b et ry4» le reste de la division euclidienne de r,
par r,11. Soit (P,) la suite des restes de I'algorithme d’Euclide appliqué a (X? — 1) et (X — 1),
avec Pp =(X?—-1), P = (Xb — 1) et P,12 le reste de la division euclidienne de P, par P,y1. On
peut démontrer, par récurrence, que pour tout n, P, = X™ — 1, par récurrence double.
L’initialisation est vraie pour n =0 et n =1, par hypothése.

Ensuite, si la proposition est vraie aux n et n+1, on écrit P, = X" —1 et P, ;1 = X™' —1. Alors
P12 est le reste de la division euclidienne de P, par P,11, donc c'est, par la question précédente
X"™+2 — 1 car rpyo est le reste de la division euclidienne de r, par r, 1.

D'ou I'hérédité, et le résultat.

On déduit donc, en appliquant I'algorithme d'Euclide, que si ng est le rang tel que r,, = a A b,
alors r,,11 = 0 et donc P, = X —1et Pyiy = X°—1=0, donc P,, = (X —1) A (XP —1).

Exercice 9. @ OO Soient n > 2, x1, ..., X, € K distincts et L1, ..., L, les polyndbmes de Lagrange associés.
Simplifier les sommes
n

Z L;et iX,L,‘.
=1 =1

Exercice 10.
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1. Quels sont les polynémes P € C[X] tels que pour tout x dans R, P(x) e R?
2. Quels sont les polynémes P € C[X] tels que pour tout x dans Q, P(x) € Q7
3. Quels sont les polynémes P € C[X] tels que pour tout x dans U, P(x) € U?

Exercices a faire en TD — minimum vital

Premier TD. Durant la premiére séance de TD, il faut se focaliser sur les bases : exercices [12] [L3] [I5] qui
doivent se faire rapidement (en moins de 30 minutes pour le total des 3), I'exercice [11] les exercice [20}

21

Deuxiéme TD. Poursuivre les exercices liés a I'arithmétique et aux racines (25} [28). Faire un exercice
théorique lié a la décomposition en éléments simples (??), et un lié a I'interpolation de Lagrange ([32)).
2 Degré, division euclidienne

Exercice 11. @ 0O Trouver les P € R[X] tels que P(X?) = (X2 + 1)P(X).

_‘ Correction

Analyse. Soit P € R[X] tel que P(X?) = (X% + 1)P(X). Alors P n'est pas constant, et 2deg P =
2 4 deg(P), donc deg(P) = 2, donc P(X) = aX? + bX + ¢. Donc

aX* +bX2+c=(X2+1)(aX?+ bX +c) = aX? + bX> + (a+ c)X? + bX + c,

donc nécessairement b=0,eta+c=b=0,i.e. a= —c.
Synthése. Soit a dans R*. Alors si P(X) = aX? — a,

P(X?) = aX* —a = a(X? = 1)(X? +1) = P(X)(X* + 1),

d’ou le résultat.

Exercice 12. ©OO Effectuer la division euclidienne de 3X*—2X>+X? 41 par (X +1) et par (X +1)2.

_‘ Correction

En posant la division euclidienne, on trouve que

3XP 4+ X2 —2X3+1=(3X3—5X2+6X—-6)(X+1)+7.
En posant la deuxiéme division euclidienne, on trouve
3X* 4+ X2 —2X34+1=(3X?-8X +14)(X — 1)* + (20X — 13)

Remarque : les restes s'obtiennent facilement avec la formule de Taylor!

Exercice 13. @ OO Déterminer I'ensemble des unités de I'anneau (K[X], +, x).

Correction

Soit P une unité de K[X]. On dispose alors de Q tel que PQ = 1, donc deg(P) + deg(Q) = 0, donc,
comme P et Q sont non nuls, deg(P) = deg(Q) = 0, donc P = X € K*. Réciproquement, tout scalaire
non nul est un un inversible de K[X].
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Exercice 14. « Equations différentielles » polynomiales @ @0
3

X
1. Résoudre I'équation (X — 1)P'+ XP =1+ >

2. Résoudre I'équation 4P = (X — 1)P' + P".

k
Exercice 15. @00 En utilisant un bon produit de polynomes, simplifier » <Z) (k g >

=0 —¢
_‘ Correction

Posons ¢x = Z <Z> (k i 2) .On reconnait ici un produit de Cauchy. Posons a, = (Z) et b, = (Z)
£=0

Alors si P(X) = Z aXtet Q(X) = Z beX* (les sommes sont en fait finies), alors ¢, est le terme de

£20 £20

degré k de P(X)Q(X). Simplifions les expressions de P et Q :

P(X) =) ax*= Z (Z)XZ =(X+1)",

£20 £=0
Q(X) = (14 X)*,

262 (2)

n . n
Exercice 16. Une identité. @ @O Soient n € Net k € [0, n]. On pose : S = Z (;{) et P= Z(X—I—l)i.
i=k i=k

donc R(X) = (1 + X)™P. On en déduit que cx = (n+p)y donc

1. Exprimer S en fonction de P(0).
2. En déduire S.

Exercice 17. @ 0O Déterminer le reste dans la division euclidienne de X* — X +a par X2 —aX +1. En déduire
un critére de divisibilité de X* — X + a par X? —aX + 1.

Correction

On écrit

Xt—X+a=(XP-aX+1)(X?+aX+@-1))+(®—a-1D((1+a)X-1),

1++5

ce reste est nul si et seulementsia®—a—1=0,i.e a= 5

Exercice 18. @@© Montrer que pour tout n il existe un unique polynéme P, tel que
Pa(X) = Py(X) = X",

et déterminer une expression des coefficients de P,.
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_‘ Correction

Utilisons les systémes linéaires pour résoudre ce probléme. Soit n dans N. Si P est solution de I'équation

n n—1
alors nécessairement deg(P) = n. Ecrivons alors P(X) = Z ax Xk, Alors P'(X) = Z ar1(k +1)X*,
k=0 k=0
donc
n—1
'Dn(X) - P;é(X) = aan + Z(ak - 3k+1(k + 1))Xk-
k=0

En identifiant les coefficients de cette expression avec ceux de X", on obtient

an =1

ap—1="na,=n

dyp —ai =0
2 —2a —0 an—o=(n—1ap_1 =n(n—-1)
an —383 =0
. l.e.

n!
an—1 —na,=20 ele = ﬂ

dp =
dog = n!

n
. . n! . . .
On en déduit que nécessairement, P, = E ﬂXk' Vérifier que P, — P} = X" est alors immédiat.
k=0 """

n

Exercice 19. @@@® Soit P un polynéme a coefficients entiers. On note P(X) = Z ax. On appelle contenu
k=0
de P et on note cont(P) le pgcd des a.

1. Soient P et Q deux polyndmes tels que cont(P) = 1. Soit R = PQ. Soit p un facteur premier de
cont(R)

(i) On suppose que le coefficient constant de P est premier avec p. Montrer que p divise tous les
coefficients de Q.

Correction
+o0 +o00 +o00

Ecrivons que P(X) = Zaka, QX) = Zkak et R(X) = chXk. Démontrons par
k=0 k=0

k=0
récurrence forte sur k que p divise by.
Initialisation. p divise cg = agbg. Mais p A ag = 1 donc, par le théoréme de Gauss, p divise

bg.
Hérédité. On suppose que p divise by, ..., b pour un certain k. Mais p divise cx+1 =
k+1
Z agbky1—¢. Comme p divise by, . .., bk, p divise les k + 1 premiers termes de la somme, et
=0

donc aussi son dernier terme, i.e. agbk+1. Comme p A ag =1, p divise byy1.

(ii) Dans le cas contraire, se ramener au cas précédent.

Si p divise ag, il y a tout de méme un plus petit entier k tel que p soit premier avec ax (sinon
p diviserait tous les a; donc le pgcd des a; donc le contenue de P, absurde car le contenu de
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P est égal a 1). Mais alors on fait la méme démonstration que précédemment. Démontrons
par récurrence forte sur k que p divise by.
m

Initialisation. p divise ¢, = Za[bm_e. Comme p divise tous les a; pour £ allant de 0 a
£=0
m—1, p divise anby donc p divise by. Hérédité. L'hérédité se fait alors de la méme maniére.

(iii) En déduire que cont(Q) = cont(R).

—‘ Correction

Déja, on sait que cont(Q) divise tous les coefficients de Q donc, par la formule du produit
de Cauchy, divise tous les coefficients de R, donc divise cont(R).

Mais on sait aussi que si p est un facteur premier de cont(R), alors il divise tous les coefficients
de @. On peut dong, si p est un facteur premier de cont(R), écrire I'égalité R = PQ sous
la forme pR>, = pPQ> avec R, et Q» obtenus en divisant tous les coefficients de R et de Q
par p. En simplifiant par p, en réitérant (récurrence) et en décomposant cont(R) en facteurs
premiers, on parvient donc a montrer que cont(R) divise tous les coefficients de Q donc
cont(Q).

D'ou I'égalité!

(iv) Déterminer de maniére générale cont(PQ).

Correction

Si P est quelconque, on écrit P = cont(P)S avec cont(S) = 1. On en déduit que

cont(PQ) = cont(cont(P)SQ) = cont(P)cont(SQ) = cont(P)cont(Q).

2. Soit R dans Z[X] tel qu'il existe P et Q dans Q[X] tels que R = PQ. Montrer qu'il existe A et B dans
Z[X] tels que R = AB.

4‘ Correction

Ecrivons tous les coefficients de P et de Q sous formes irréductibles, posons p le ppcm des
dénominateurs des coefficients de P et g celui des coefficients de Q. Alors S = pP € Z[X] et
T = qQ € Z[X]. Mais alors

pgR = ST, donc pgcont(R) = cont(S)cont(T).

Donc pq divise cont(S)cont(T), donc on peut écrire pg = ab avec a qui divise cont(S) et b qui
1 1
divise cont(T). Donc si A = 55 et B= ET' ona AcZX], BeZ[X] et R=AB.

3 Racines

Exercice 20. @ 0O
1. Pourquoi n'y a-t-il pas de polynéme réel P tel que Vx € R, P(x) =sin(x)?

Correction

P s'annulerait une infinité de fois (en les 2nm) et serait donc nul, absurde.
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2. Pourquoi n'y a-t-il pas de polyndme réel P tel que Vx € [0, 27], P(x) =sin(x)?

Correction

P vérifierait P” = —P, absurde si P non nul.

3. Pourquoi n'y a-t-il pas de polynéme réel P tel que Vx € R, P(x) = |x]|?

Correction

P vérifierait Vn € N, P(n) = n, donc P(X) = X, absurde.

4. Pourquoi n'y a-t-il pas de polynéme complexe P tel que Vz € C, P(z)=Z7

4‘ Correction

P vérifierait ¥x € R, P(x) = x, donc P(X) = X, absurde.

Exercice 21. @@0 Donner une condition nécessaire et suffisante sur A € C pour que X3 — 7X + X admette
une racine qui soit le double d'une autre. Résoudre alors |'équation.

Correction

On veut qu'il existe o tel que
a’—T7a+X=0,

et
83 — 14+ X =0,

a® — 70 =8a°— 14«

ie. 70 =7a,ie.a’®=1,oua=0,ie ac{0,1,—1}. Il faut donc que X soit tel que 0, 1 ou —1 soit
racine du polynéme. On a donc A = 0 (O est alors solution), A = 6 (1 est alors solution), ou A = —6
(—1 est solution).

Exercice 22. @ @0 Résoudre les systémes suivants dans C> :

X+ty+z=1 X+y+z=0
()] X*+y*+22=3 () X*+y*+22=0
Xyz =2 P+y}+22=3

n
Exercice 23. @@0 Soit P = Z a X" avec a, # 0. Soit w une racine de P. Montrer que
k=0

n—1
dk

wl <1+ .

k=0

n

Correction

Soit w une racine de P. Si |w| < 1, l'inégalité est évidente. Si ce n'est pas le cas, on sait que

n
E akwk =0,
k=0
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ie.
n—1
aw’ = — E awk,
k=0
donc
n—1 z
Z K k—(n—
W= — iwk (n 1)‘
a
k=0 "

Donc, par I'inégalité triangulaire,
n—1
dk

lw| < Z o
k=0

|w|k—(n—1).

n

Or, |w| > 1, donc, pour k < n—1, |w[<""~1 < 1, donc

n—1 3 n—1 3

k k

W< | <1+ Y| %
k= | an ko | an

d’ou le résultat.

Exercice 24. @@@® Déterminer les polyndmes P de C[X] qui vérifient P(X?) = P(X)P(X + 1).

_‘ Correction

Analyse. Soit P un tel polyndme. Alors si o est racine de P, a? I'est aussi, de méme que o — 12. Or,
sia e Ceta#0ouaz#l,alors I'un des deux nombres o ou o — 1 est de module différent de 0 ou
de 1. Donc I'une des deux suites (a”)pen ou ((a — 1)) pen est infinie, donc P est nul (le polynéme nul
convient en effet).

Sinon, si P est non nul, ses deux seules racines possibles sont 1 et 0, donc P(X) = X?(X — 1)°. Or,
P(X?) = X?2(X? —1)P = X?3(X — 1)P(X 4+ 1)°. Ensuite, P(X)P(X +1) = X?(X —1)P(X +1)°X> =
XaTb(X —1)P(X 4 1)?. Donc nécessairement, a = b. Donc P est nécessairement de la forme

P(X) = XX —-1)7,

avec a € N.
Synthése évidente.

4 Arithmétique et polynomes irréductibles

Exercice 25. © OO Déterminer la décomposition en produit d'irréductibles sur R et sur C de

X3 =27 = (X = 3)(X? + 3X +9), décomposé sur R car 32 — 4 x 9 < 0.

—1 Correction X3 =27 = (X = 3)(X —3j)(X —3/°) sur C.

X*+2X2+1=(X?+1)? il s'agit de la déconTpoSITOM e ProTuTT T M TETuTHDTES SUT K. TVTaTs O
2 aussi X4 +2X2 + 1 = (X + 0)2(X — i)2, décomposition en produit d'irrédinkiles-sef & X + |- + X" (sur C unique-

ment)
(i) X°+Xx3+1 -
U3 X" -1
(iii) X° —27 1+X+”.+X”_1:X—1: H (X —w).
WGUN\{]-}

(v) X211
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Exercice 26. 1. Rappeler la décomposition en produits d’irréductibles de X" — 1.

Correction
n—1
2ikm

On sait que X" —1 = H(X —en ).
k=0

2. En déduire la décomposition en produits d’irréductibles de 1 + X + - -+ 4+ X1,

4‘ Correction
2ikm

n—1
On saitque1+X+---+X”_1=H(X—e ).
k=1

n—1
k
3. Calculer Hsin (:)

k=1

Correction

On évalue le polyndme précédent en 1 et on obtient

ikm . km
=||e~ (—2i)sin—
n
k=1
n—1

n—1 L
ik . _ .
=\|le" 21 (=i)" 1Hsm—
n
k=1

k=1
n—1
in-nr o kT
=e 2 2" H(—))" 1Hsm—
n
k=1
n—1
n—1 : kT
=3, Hsm—
n
k=1

Donc

n—1

k
4. Pour 6 € R, calculer H sin (W + 9).
n

k=0
Correction

On fait de méme en évaluant en e 2% (en supposant 6 # 0[27])
1 iy .
nz:(efm)k _1l-e 2 — o—iln—1)8 sin(nf)
1—e20 sin(0)

femm
=0
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Mais

Z(e—2/9)k H(e—2/9 ez’”

— H el e—le(e/( 9——) _ ei(9+%"))

nl k i kT
=J[e" e (—2i)sin <n + 0)

k=1

n—1
j i(n=1)m . . [ km
efl(nfl)GeTanl n—1 I | sin 0
I | n -+

k=1
nt kT
_ 7i(n71)92n71 :
e k|=|1 sin ( - +9> }

Donc

sin(n@)
Hsm <+9) 2Tsin(8)

Exercice 27. @ OO Calculer le PGCD et le PPCM de 2X*+3X34+4X24+2X+1 et de 3X3+4X%+4X+1.

Correction

On détermine ces deux quantités par I'algorithme d’Euclide, et on trouve un pgcd égal a X%+ X +1 et
un ppcm égal a 6X° + 11X* +15X3 + 10X% +5X + 1.

Exercice 28. @ OO Montrer que pour tout entier naturel n,
nX"2 — (n+2)X"™ + (n+2)X —

est divisible par (X — 1)3.

Correction

Le plus simple est de voir ce genre d'exercice a l'aide des racines. Si on pose P(X) = nX""? — (n +
2)X™ 4+ (n 4 2)X — n, il suffit de montrer que 1 est racine de multiplicité 3 de P. Or, P(1) =

—(n+2)+n+2—n=0. Ensuite, P'(1) = (n+2)n—(n+2)(n+ 1) + (n+2) = 0. Enfin,
P"(1) = (n+2)(n+ 1)n— (n+2)(n+ 1)n = 0. Donc 1 est racine de P de multiplicité 3, d'ou le
résultat.

Exercice 29. @@ Montrer que pour tous n € N* et § € R, le polynéme X" sin6 — X sin(n@) + sin((n—1)6)
est divisible par X2 — 2X cos 6 + 1

Exercice 30. @@@® On cherche a démontrer le résultat suivant : si P € R[X] est positif sur R, alors on
dispose de A et B dans R[X] tels que P = A% + B.

1. Démontrer que {A% 4 B2, (A, B) € R[X]} est stable par produit.

2. En considérant la décomposition de P en produit d'irréductibles, en déduire le résultat.

Exercice 31. @@0O Soient A et B deux polyndémes de K[X]. Montrer que A et B sont premiers entre eux si
et seulement si AB et A+ B sont premiers entre eux.
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_‘ Correction

Cet exercice est la pour montrer que parfois, les exercices utilisent des raisonnements en tout point
identiques aux raisonnements d'arithmétique sur les entiers. Déja, si AB et A+ B sont premiers entre
eux, tout diviseur commun a A et B divise AB et A+ B, donc divise (AB) A (A+ B) =1, donc A et
B sont premiers entre eux.

Ensuite, si A et B sont premiers entre eux, on montre que A+ B est premier avec A : on écrit AU+BV =1
une relation de Bézout. Alors A(U — V) + (A+ B)V =1, donc A + B est premier avec A. De méme
A+ B est premier avec B, donc il est premier avec AB.

Autre méthode : si a est une racine complexe de AB, c'est soit une racinde de A, soit de B. o est donc
une racine de A+ B ssi A ET B s’annulent en a.

5 Polynémes célébres

Exercice 32. Un exercice sur les polynémes de Lagrange. @©O
Soient Lq,..., L, les polyndmes de Lagrange associés a 1, ..., n.

1. Déterminer le coefficient dominant de Ly pour k € [1, n].

Correction

Par les formules du cours, on sait que

Hl_sﬁn(x —1)

Le(X) = w=F——=.

«(X) [ici<n(k = 1)
£k

Le coefficient dominant de L,(X) est donc

1
[Ticicn(k —10)
iR

Or
II&-n= 1] k-0 J[ *k-.
1<i<n 1<i<k—1 k+1<i<n
i#k i#k i#k
En posant £ =k — i, on a

II «k=0= T[] ¢=*-1)

1<i<k—1 1<e<k—1

et, en posant £ =/ — k,

[T «k=0= J] —¢=E1)"* n-kK)

k+1<i<n 1<e<n—k

Donc le coefficient dominant de L, est

. 1 (=) *(n-1
(=1) k(k—l)!(n—k)! “(n—1)! <k—1>'

2. Déterminer I'expression d'un polynéme P de degré n — 1 tel que : Yk € [1, n], P(k) = k" *.

e En donnant directement I'expression évidente.
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o Al'aidedes Lq,..., L.

4‘ Correction

lateur

Q(X) = k" Li(X).
k=1

Un polyndme évident est P(X) = X"1. En utilisant les polyndmes Ly, on a le polynéme interpo-

n
3. En déduire une expression simplifiée de Z <n)(1)nkkn.

k
k=0
4‘ Correction

sont égaux, donc
n

=3 (0

o k=1
) = G0)
(D)
Donc

kzn‘;(—n"—k(Z) DU

Par unicité du polynéme interpolateur, on a P = Q. En particulier leurs coefficients dominants

Exercice 33. Polynémes de Tchebycheff, suite. @@O Cet exercice a besoin du premier exercice sur les

polynémes de Tchebycheff.
Si f est une fonction définie sur [—1, 1], on définit ||f|l.c = sup |f(x)].
x€[—1,1]
1. Calculer ||T,]0o-

4‘ Correction

dispose de xg tel que |T,(x0)| = 1. Donc ||Thlleo = 1.

Si x € [-1,1], on dispose de 6 tel que x = cos(8), donc T,(x) = T,(cos(8)) = cos(nd) donc
IT,(x)| < 1. De plus, T,(1) = T,(cos(0)) = cos(n.0) = cos(0) = 1. Donc |T,(x)| < 1 et on

2. Montrer que Vn € N, |sin nu| < n|sin ul.

On démontre par récurrence que P, : Vu, |sin(nu)| < n|sin(u)].
Initialisation. Pour n =0, |sin(0.u)| = 0 < 0.|sin(u)].
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Hérédité. Supposons que pour un certain n, Vu, |sin(nu)| < n|sin(u)|. Soit u € R. Alors

|sin((n+ 1)u)| = |sin(nu) cos(u) + sin(u) cos(nu)|
< |sin(nu) cos(u)| + | sin(u) cos(nu)|
< |sin(nu)| + | sin(u)]
< n|sin(u)| + |sin(u)| par hypothése de récurrence.
< (n41)|sin(w)].

D’ou I'hérédité, et le résultat par récurrence.

3. En déduire ||T)||s = 0.

Correction

On sait que T,(cos(8)) = cos(nB), donc —sin(0)T}(cos(8)) = —nsin(nd), donc

|sin(8) T (cos(8))| = |nsin(nB)| < n?|sin(8)],

donc |T/(cos(6))| < n?, donc, pour tout x dans [—1,1], |T,(x)| < n?
Ensuite, calculons |T}(1)| = |T}(cos(0))|. Par continuité de T,, T,(cos(6)) ~e—o T,(0), donc

—sin(8)T!(cos(8)) ~ —6T.(0) et —nsin(nf) ~ —n?8, donc —OT,(0) ~ —n?6, donc T,(0) ~ n?
donc |T,(0)| = n*.

4"
2

-1
4. Montrer que Vr € R*, T, (r—i—r ):

2
Correction

_ r+r7t
Montrons par récurrence double que pour tout n € N, la propositon P,, : Vr € R*, T, < 5 > =

4 r="
2
Initialisation. 7To(X) = 1 donc To(

est vraie.

=il 04 ,—0
rer ) = i De méme, T1(X) = X donc

2 2
T

r+r !\ r4rt
2 2
Hérédité. On suppose P, et P,41 vraies pour un certain n. Alors

r+rt r+rt r+rt r4r7t
T (55) =2(55) e () -1 (F5)

) (r + r1> Pl o=l pn g e

2 2 2
2y n N LA L e
N 2 2 2
_ I’n+2+l’7n71
B 2
d’ou la proposition et le résultat !
5. Soit un réel x € [1, +o0l.

r4r1

(i) Montrer qu'il existe r € R*, tel que x = 5
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—‘ Correction

L'équation x =

I’71

est équivalente a 2rx = rP+1, ie rP—2xr+1 =0, de discriminant

2v/x2 — 1, bien défini car x > 1, donc r = x &= v/x2 — 1 sont deux solutions de I'équation.

(i) En déduire que 1 < Tp(x) < <x+ VX2 — 1)

—‘ Correction

On sait que x =

n

I’71

. donc r2 —2xr + 1 = 0, de discriminant 24/x2 — 1, donc r =
x + v/x2—1. Prenons r = x + v/x2 —1 par exemple. Alors un bref calcul montre que
1

. 1 . .
o= x —4/x2 =111 (un autre argument permet de voir que P vérifie la méme équation que

1 _ .
r). En remplagant r et P dans I'expression de la 11, on obtient que

r+r1 4 (X VXE=D)"+ (x— VX2 =1)7" _ 2(x+Vx2—1)
Tn(X) = Tn 5 = 5 = 5 < 5 ’
N ) 4"
d'oul le résultat. De plus, comme r > 0, T,(x) = — = ch(nin(r)) > 1.

6. En dérivant I'égalité T,(cos t) = cos nt valable pour tout réel t € [0, 7], trouver une équation différen-
tielle linéaire homogéne du second ordre vérifiée sur R par T,,.

4‘ Correction

On sait que T,(cos(9)) = cos(nb), donc —sin(0)T/(cos(8)) = —nsin(nd), donc

—cos(8) T/ (cos(8)) + sin?(8) T/ (cos(8)) = —n? cos(nf) = —n’T,(cos(8)),

—cos(0) T/ (cos(8)) + (1 — cos?(0)) T (cos(9)) = —nT,(cos(8))

(1 — cos?(6)) T/ (cos(8)) — cos(8) T,(cos(8)) + n*T,(cos(8)) = 0,
i.e., pour tout x dans [—1, 1],
(1 —xAT!(x) — xTH(x) + n*Th(x) =0,

donc
(1 —X2)T/(X) = XTH(X) +n’TH(X) = 0.

k)l 2Kkl
7. Soit k € N, k < n. Déduire de la question précédente que T,Sk)(l) = an_ p EZ—E ki! 20!

que T (=1) = (=1)"TH(1).

Démonstrons le résultat par récurrence sur k.
n (n+0)! 200!
(n+0)(n—=0)!(2.0)!
n (n+ k)l 2kk!
n+k(n—k)(2k)V"

. Montrer

Initialisation. Déja T(9(1) = 1 =

= 1. Hérédité. Supposons que pour

un certain k, T\ (1) =
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En dérivant k fois I'équation différentielle précédente (et en utilisant la formule de Leibniz), on
obtient

(’8)(1 — X T+2(X) — (’I) 2XT D (X) — (g) 2T (X)
_ (% XT+D(X) — K TW(X) 4+ n?TW(X) =0,
(o) (3)

donc, en évaluant en 1,

—2kTR+D(1) — k(k — 1)TW (1) = T (1) — kTR (1) + RPTR (1) = 0,

donc
—(2k+ DTHEDQ) + (n? = kAT (1) = 0,
donc
1
(k+1) - - _ (k)
Ty (1) Y 7 (n = k) (n+ K)T;7(1)
1 n (n+ k) 2kk!
= k1 O R TR 2R

1 2(k+1) (n+k+1) (n+k)! 2Kkl
T 2k+1(2k+2) (n+ k+1) (n— (k+ 1) (2k)!
n (n+ k+ 1)1 2k (k 4+ 1)!

ntk+1(n—(k+1)! Kk+1) "

d'ou I'hérédité et le résultat.

En fait le dernier résultat est stupide. Si n est pair, T, est pair donc T,(—x) = T,(x) pour tout x
donc en dérivant k fois (—1)¥T{¥(—x) = Tp(x), i.e. en évaluant en 1, T,(—=1) = (=1)*T,(1) =
(=1)*T,(1) = (=1)**"T,(1) car n est pair. De méme si n est impair.

Exercice 34. Polynémes de Legendre. @ @O Pour tout entier naturel n on pose
n!
(2n)!

1. Montrer que L, est un polynéme unitaire de degré n.

Correction

L, est la dérivée n-ieme d'un polyndme de degré 2n, donc il est de degré n. Son coefficient
nt on n' (2n — n)!
X e —_

(2n)! (2n)! n!

Ln — ((X2 o 1)n)(”)

dominant est celui de la dérivée n-ieme de

=1, donc L, est bien

unitaire.

2. Montrer que
1
VQ € Rn_l[X],/ L,(t)Q(t)dt =0
-1

Posons P(X) = (X? — 1)". Soit Q dans R[X]. Montrons par récurrence que pour tout entier k
dans [0, n],

/ PO()Q(x)dx = (1) /  PR()QU ()d

1 1
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Initialisation évidente pour kK = 0.
Hérédité. Supposons que pour un certain k € [0, n — 1],

1 1
/ P (x)Q(x)dx = (—1) / PR (x)Q™W (x)dx.

1

Effectuons une IPP en posant u/(x) = P9 (x), v(x) = Q¥ (x), donc u(x) = PI~(FD) et
V'(x) = Q¥ (x). Donc

1 1
/ PO=) (x0) Q™) (x) dx = [P(”—(k+1))Q(k)(X)} _ (_1)k/ Pr=(D) () QUKD () dix.
=l

Or, —1 et 1 sont des racines de multiplicité n de P, doncsi 0 < k < n—1, P(”’(k“))(—l) =
p=(+1)(1) = 0. Donc

1 1
/ P(nfk) (X)Q(k)(X)dX _ 7(71)/(/ P(n*(kJrl))(X)Q(kle)(X)dX
—1 =il

_ (71)k+1 /1 P(nf(k+1))(X)Q(k+1)(X)dX’

1
le résultat est donc prouvé. En particulier,
1 1
/ PO (x)Q(x)dx = (—1)" / PO (x)Q™ (x)dx,
—1 =1l

et donc

1 1 | .
/_1 Lo(x)Q(x)dx = (—1)”/_1 (z”n)! (x2 = 1)"Q"(x)dx = 0

si Q est dans R,_1(X). Le résultat est donc démontré.

3. En déduire que L, posséde n racines simples toutes dans | — 1, 1[. On utilisera sans la démontrer la
propriété suivante : toute fonction continue positive sur un segment d’'intégrale nulle sur ce segment
est nulle.

Supposons que L, s'annule strictement moins de n fois sur | — 1, 1[. Si L, garde un signe constant
(par exemple L, > 0, on sait par la question précédente que

1 1
/ Ln(x)dx:/ L,x 1ldx=0.
=) =il

Or I'intégrale sur un segment d'une fonction positive est nulle si et seulement si cette fonction
est nulle, donc L, serait nulle sur | — 1, 1[, donc L, s'annulerait une infinité de fois et serait le
polynéme nul, impossible.

Supposons que L, change de signe en oy, o, ..., a,, avec r < n. Supposons de plus que sur
la,, 1[, L, soit positive. Considérons alors

QMX) = JT(X = ).
k=1

Alors Q est du signe de L, sur chacun des intervalles Ja;, ajr1[. De plus, comme r < n, Q €

1
R,_1[X], donc / La(x)Q(x)dx = 0, et L,Q est positive sur | — 1, 1[. Donc L,Q est nulle sur
=il
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] —1,1[, donc L,Q est le polynéme nul, donc L, est le polynéme nul, absurde.
Donc L, posséde n racines dans | — 1, 1].

Exercice 352. kPo/ynémes cyclotomiques. @@@® On définit I'ensemble des racines primitives n-iemes de I'unité
parUU, ={e ™  ke[0,n—1] et kAn=1}.

1. Que vaut

[T X —w)?

wel,

Correction

Par le cours, on sait que H X—-—w)y=X"-1.

w€elU,

On appelle n-iéme polynéme cyclotomique le polynéme

o) = [Tx—wy= [ (x-¢%).

w€eUp kelo,n]
knn=1

2. Soit p un nombre premier. Que vaut d(p)(X)?

Correction

Si p est un nombre premier, tout nombre entre 0 et p — 1 est premier avec p. Donc

2ikm XP - 1
— P = — = = “e . p_l
I1 (X e ) [IX-w)= 5= =1+ X+ +x°
ke[0,p] weU,
kAp=1 w#1

3. On veut montrer que

X" —1=[[®a(X).
d|n

(i) Soit d un entier divisant n, montrer que toute racine de ®4 est une racine n-ieme de I'unité.
Réciproquement, montrer que toute racine n-iéme de |'unité est une racine primitive §-iéme de
I'unité pour un certain ¢ divisant n.

—‘ Correction

Si w est une racine de ®g4, alors w? = 1. Or n = pd avec p € N, donc w" = wP? = (wd)p =1,
donc w est une racine n-ieme de 'unité. Réciproquement, si w est racine n-ieme de |'unité,
alors soit d = min{k, w" = 1}. Alors d|n : si ce n'était pas le cas, on écrirait n = dq + r
avec 0 < r < d, et w" = 1 ce qui contredirait la minimalité de r. Ensuite w¥ =1, et w € Uy.
En effet, si on avait w = e avec kAd =r # 1, alors on écrirait k = ra, d = rb, et donc
kb = ad, donc w” =1, avec b < d, absurde.

On a donc montré que X" — 1 et H¢d(X) avaient les mémes racines.
d|n
(if) Montrer que X" — 1 est a racines simples.
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—‘ Correction

Cf cours, on connait la décomposition de X" — 1.

(iii) Montrons que HdDd(X) est a racines simples.
d|n
e Soient d # § deux entiers. Montrer que Uy NUs = (.

.
Correction
Soit w € Uy NU5. Alors on dispose de k et £ tels que el = e%, avec k < detf <9,
donc
k £

d ¢
donc k6 = df. Comme k A d =1, k|£ par le théoréme de Gauss. De méme, 6 AL =1,
donc par le théoreme de Gauss, £|k. Donc k = £, or k # 0, donc § = d, absurde!

e En déduire que chd(X) est a racines simples.
d|n

.
Correction

On en déduit que toutes les racines des ®4 pour d|n sont deux a deux distinctes, donc
le polynéme H ®, est scindé a racines simples.
d|n

(iv) Conclure.

—‘ Correction

On en déduit que les racines de X" — 1 et de HCDd sont communes et toutes simples, donc
d|n

les deux polynémes sont égaux.

4. Soit @ I'indicatrice d'Euler : ¢(n) est le nombre d’entiers inférieurs a n et premiers avec n. Montrer que

n= Z o(d).
d|n
Correction

En égalisant les degrés, on obtient n = Z Card(Uy) = Z(p(d).
d|n dln

Indications

@ 1. Utiliser le théoreme de Rolle.
2. Utiliser le fait qu'un polyndme est a racines simples ssi il est premier avec son polynéme dérivé.
3. Utiliser le théoréeme de Rolle et compter les racines de P’ avec multiplicité.
1

. Penser a distinguer les cas a = b et a # b. Le premier cas se résout avec une formule de Taylor. Le second
se résout a la main, en adaptant la preuve du « reste de la division euclidienne par X — a »

2. Utiliser le résultat précédent et I'exponentielle complexe.

[4l L’'idée fondamentale est de penser aux relations coefficients-racines ! Dans le premier systéme, on a facilement
la somme des racines et, si I'on multiplie la derniére équation par xyz, on a une relation entre le produit des
racines et la quantité xy + yz 4+ zx ! Enfin, remarquer ce que vaut X2 + y2 +72 - 2(xy + yz + zx).
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Bl 1. On pourra remarquer que cos(n@) est la partie réelle de (cos(0) + isin(6))".
2. Utiliser le fait que deux polynémes égaux en une infinité de points sont égaux.
3. Utiliser la formule trouvée en 1.
4. Ecrire cos((n+ 1)8) en fonction de cos(n@) et cos((n + 2)8).
5.

il

@8l

110!

HERE

=-!
= B

BREEBEHN

BEREBBRERBER

6. Regarder les points d'annulation de cos(né).

Conseil important : référez-vous au chapitre d'arithmétique des entiers! L'idée est que tout a déja été fait dans
ce chapitre!

1. Commencer a factoriser comme on voudrait et utiliser I'identité de Bernoulli.
2. Utiliser I'algorithme d'Euclide.

1. Lagrange

2. Lagrange

3. Remarquer que pour tout z dans U, |F’(z)\2 = 1. On aura intérét a considérer, si P est de degré n, le

polynéme Q(X) = P(X)X"P (%

), en s'assurant que I'on définit bien un polynéme de cette maniére.
Faire un raisonnement sur le degré.

Faire le calcul comme indiqué en cours. Ou utiliser la formule de Taylor.

Revoir ce qu'est I'ensemble des unités d'un anneau, puis faire un raisonnement sur le degré.

Bien sir, il ne s’agit pas de résoudre les équations différentielles comme au chapitre 7! Regarder le degré,
regarder le coefficient dominant, les coefficients constants, etc!

Reconnaftre le coefficient d’ordre k du produit (X + 1)"(X + 1)”.
Le méme que le précédent, en plus dur!
1. Dériver la somme, vous devriez trouver ce qu'il faut!

2. P fait penser a une somme géométrique... essayez d'écrire ce que vaut XP(X) = ((X + 1) — 1)P(X).
Puis, dériver cette expression k + 1 fois !

Poser la division euclidienne et chercher une CNS pour que ce reste soit nul.
Résoudre un systéme linéaire !

Raisonner sur les racines, ou bien la dérivabilité.

Ecrire un systéme d’équations que doit vérifier .

Inspirez-vous fortement de I'exercice []!

Prendre w une racine de P. Si elle est de module < 1, c’est bon. Sinon, utiliser le fait que |w*| < |w|" pour tout
k < n.

Montrer que P est nul ou de la forme X7(X — 1)°.

Reconnaitre des racines de I'unité.

Utiliser la décomposition obtenue en question 2, I'évaluer en 1, en e %0
Utiliser I'algorithme d’'Euclide ou une relation de Bézout.

Utiliser les racines!

De méme, déterminer les racines du polynéme qui est censé diviser |'autre !
Exercice fait en arithmétique des entiers relatifs. Utiliser des relations de Bézout.

Utiliser I'expression vue en cours des polyndmes de Lagrange.

Faire une récurrence.

Montrer que ||Th||l < 1 puis que cette quantité est atteinte.
Faire une récurrence

(i)

(i) Résoudre I'équation du second degré vérifiée par r.

o kWb
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N=w =N

Faire une récurrence
Utiliser un calcul de dérivée n-iéme.
Faire des IPP

Question presque faite dans le chapitre de dérivabilité.

Utiliser que tout nombre de [1, p — 1] est premier avec p.

(i) Utiliser proprement les racines de I'unité.
(it)

(i) Utiliser le théoréeme de Gauss

(iv)

Utiliser les degrés.
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