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TD 16
Polynômes et fractions rationnelles

1 Exercices corrigés en classe

Exercice 1. Sur les racines de polynômes réels. Soir P un polynôme de R[X].

1. On suppose P scindé à racines simples. Montrer que P ′ est scindé à racines simples.

Correction

Soit n le degré de P , a1, . . . , an ses racines simples. Alors, pour tout i dans J1, n − 1K, P est
continue sur [ai , ai+1], dérivable sur ]ai , ai+1[, P (ai) = P (ai+1) = 0 donc, d’après le théorème de
Rolle, on dispose de bi dans ]ai , ai+1[ tel que P ′(bi) = 0. On a donc trouvé n−1 racines distinctes
de P ′. Or, P ′ est de degré n− 1 : on a donc trouvé toutes les racines de P ′, et P ′ est donc scindé
à racines simples sur R.

2. En déduire que si P est scindé à racines simples sur R, alors P 2 + 1 est à scindé à racines simples sur
C.

Correction

Soit n le degré de P . On calcule (P 2 + 1)′ = 2PP ′. Comme P est scindé à racines simples sur R,
P ′ aussi et P et P ′ n’ont pas de racines en commun, donc 2PP ′ a n + n − 1 = 2n − 1 racines.
Donc (P 2 + 1)′ est scindé à racines simples sur R. Or, P 2 + 1 est strictement positif sur R donc
n’a aucune racine réelle. Donc P 2 + 1 et (P 2 + 1)′ n’ont pas de racine en commun. Donc P 2 + 1

est à racines simples (et donc scindé à racines simples sur C).

3. Montrer que si P est scindé sur R (pas nécessairement à racines simples), P ′ est scindé sur R.

Correction

Soit n le degré de P , soient a1, . . . , ar les racines de P , m1, . . . , mr leurs multiplicités. On sait que
P a n racines comptées avec multiplicités, i.e. que m1 + · · ·+mr = n.

• En appliquant le théorème de Rolle entre ai et ai+1, pour tout i dans J1, r − 1K, on obtient
r − 1 racines de P ′, toutes distinctes de a1, . . . , ar .

• Ensuite, soit i dans J1, rK. Comme ai est racine de multiplicité mi de P , ai est racine de
multiplicité mi − 1 de P ′ (éventuellement nulle). D’où, en les comptant avec multiplicités,
r∑
i=1

(mi − 1) racines comptées avec multiplicité, i.e.

(
r∑
i=1

mi

)
− r = n− r racines comptées

avec multiplicité.

Au final, on obtient n − r + r − 1 = n − 1 racines réelles comptées avec multiplicité pour P ′, qui
est de degré n − 1 : toutes les racines de P ′ sont donc réelles, donc P ′ est scindé sur R.

Exercice 2. Soient P dans C[X] et a, b deux complexes.

1. Déteminer le reste de la division euclidienne de P par (X − a)(X − b). On distinguera les cas a = b et
a 6= b.

Correction

Distinguons les cas :
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• si a = b, le reste est P (a) + (X − a)P ′(a).

• si a 6= b, on écrit le reste comme αX + β, et on a P (a) = αa + β, P (b) = αb + β, donc

α =
P (b)− P (a)

b − a et β =
bP (a)− aP (b)

b − a .

2. En déduire le reste de la division euclidienne de (cos(θ) + X sin(θ))n par X2 + 1.

Correction

Ici, on remarque que si P (X) = (cos(θ) +X sin(θ))n, a = i et b = −i , on est dans la situation de
la question précédente. On a alors P (a) = einθ et P (b) = e−inθ. Donc le reste est αX + β, avec

α =
einθ − e−inθ

i − (−i) =
einθ − e−inθ

2i
= sin(nθ),

et

β =
ieinθ − (−i)e−inθ

2i
=

einθ + e−inθ

2
= cos(nθ),

donc le reste de la division euclidienne de (cos(θ) +X sin(θ))n par X2+ 1 est sin(nθ)X+ cos(nθ).

Exercice 3.

1. Déterminer tous les polynômes P ∈ R[X] pour lesquels pour tout n ∈ N, P (n) = n2.

2. Déterminer tous les polynômes P ∈ R[X] pour lesquels pour tout n ∈ N, P (n) = n2 + (−1)n.

Exercice 4. Soit (x, y , z) ∈ (C∗)3. On pose P = (X − x)(X − y)(X − z).

1. Que vaut P si (x, y , z) est solution de 
x + y + z = 1

x2 + y2 + z2 = 21
1

x
+

1

y
+

1

z
= 1

2. En déduire l’ensemble des triplets (x, y , z) satisfaisant le système précédent.

Exercice 5. Polynômes de Tchebycheff . Soit n ∈ N∗.
1. Déterminer un polynôme T à coefficients réels de degré n vérifiant la propriété (∗) :

∀θ ∈ R, T (cos(θ)) = cos(nθ). (*)

2. Montrer qu’un polynôme vérifiant (*) est unique.

3. Déterminer, pour tout entier naturel n, le degré et le coefficient dominant de Tn.

4. Montrer que Tn+2 = 2XTn+1 − Tn.
5. Calculer T0 ,T1 ,T2 ,T3.

6. Montrer que Tn = 2n−1
n−1∏
k=0

(X − cos (θk)), où θk =
(2k + 1)π

2n
.

Exercice 6.  ## Soient P ∈ C[X] et n ∈ N∗. Montrer que si P (Xn) est divisible par X − 1, alors il l’est
aussi par Xn − 1.

Exercice 7. Soient A et B dans K[X].

1. Si C ∈ K[X], déterminer tous les couples (U, V ) tels que AU + BV = C.
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2. Si A et B sont premiers entre eux montrer qu’il existe un unique couple U, V tels que AU + BV = 1,
deg(U) < deg(B) et deg(V ) < deg(A).

Exercice 8. Variations autout de Xn − 1. 1. Montrer que si b divise a, alors Xb−1 divise Xa−1.

Correction

Écrivons a = bq avec q ∈ N. Alors

Xa − 1 = Xbq − 1 = (Xb)q − 1q = (Xb − 1)(Xb(q−1) +Xb(q−2) + · · ·+ 1).

2. Déterminer le reste dans la division euclidienne de Xa−1 par Xb−1 (en supposant b 6 a), en fonction
du quotient q et du reste r de la division euclidienne de a par b.

Correction

On écrit a = bq + r . Alors

Xa − 1 = Xbq+r − 1

= Xbq+r −Xr +Xr − 1

= Xr (Xbq − 1) + Xr − 1

= Xr (Xbq − 1q) + Xr − 1

= Xr (Xb − 1)(Xb(q−1) +Xb(q−2) + · · ·+ 1) + Xr − 1,

donc le quotient de la division est Xr (Xb(q−1) +Xb(q−2) et le reste est Xr − 1.

3. En déduire que (Xa − 1) ∧ (Xb − 1) = Xa∧b − 1.

Correction

Appliquons l’algorithme d’Euclide à Xa − 1 et Xb − 1. Soit (rn) la suite des restes de l’algorithme
d’Euclide appliqué à a et b, avec r0 = a, r1 = b et rn+2 le reste de la division euclidienne de rn
par rn+1. Soit (Pn) la suite des restes de l’algorithme d’Euclide appliqué à (Xa − 1) et (Xb − 1),
avec P0 = (Xa − 1), P1 = (Xb − 1) et Pn+2 le reste de la division euclidienne de Pn par Pn+1. On
peut démontrer, par récurrence, que pour tout n, Pn = Xrn − 1, par récurrence double.
L’initialisation est vraie pour n = 0 et n = 1, par hypothèse.
Ensuite, si la proposition est vraie aux n et n+ 1, on écrit Pn = Xrn −1 et Pn+1 = Xrn+1 −1. Alors
Pn+2 est le reste de la division euclidienne de Pn par Pn+1, donc c’est, par la question précédente
Xrn+2 − 1 car rn+2 est le reste de la division euclidienne de rn par rn+1.
D’où l’hérédité, et le résultat.

On déduit donc, en appliquant l’algorithme d’Euclide, que si n0 est le rang tel que rn0 = a ∧ b,
alors rn0+1 = 0 et donc Pn0 = Xa∧b − 1 et Pn0+1 = X0 − 1 = 0, donc Pn0 = (Xa − 1)∧ (Xb − 1).

Exercice 9.  ## Soient n > 2, x1, . . . , xn ∈ K distincts et L1, . . . , Ln les polynômes de Lagrange associés.
Simplifier les sommes
n∑
i=1

Li et
n∑
i=1

xiLi .

Exercice 10.
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1. Quels sont les polynômes P ∈ C[X] tels que pour tout x dans R, P (x) ∈ R ?
2. Quels sont les polynômes P ∈ C[X] tels que pour tout x dans Q, P (x) ∈ Q ?

3. Quels sont les polynômes P ∈ C[X] tels que pour tout x dans U, P (x) ∈ U ?

Exercices à faire en TD – minimum vital

Premier TD. Durant la première séance de TD, il faut se focaliser sur les bases : exercices 12, 13, 15 qui
doivent se faire rapidement (en moins de 30 minutes pour le total des 3), l’exercice 11, les exercice 20,
21.

Deuxième TD. Poursuivre les exercices liés à l’arithmétique et aux racines (25, 28). Faire un exercice
théorique lié à la décomposition en éléments simples (??), et un lié à l’interpolation de Lagrange (32).

2 Degré, division euclidienne

Exercice 11.  ## Trouver les P ∈ R[X] tels que P (X2) = (X2 + 1)P (X).

Correction
Analyse. Soit P ∈ R[X] tel que P (X2) = (X2 + 1)P (X). Alors P n’est pas constant, et 2 degP =

2 + deg(P ), donc deg(P ) = 2, donc P (X) = aX2 + bX + c . Donc

aX4 + bX2 + c = (X2 + 1)(aX2 + bX + c) = aX2 + bX3 + (a + c)X2 + bX + c,

donc nécessairement b = 0, et a + c = b = 0, i.e. a = −c .
Synthèse. Soit a dans R∗. Alors si P (X) = aX2 − a,

P (X2) = aX4 − a = a(X2 − 1)(X2 + 1) = P (X)(X2 + 1),

d’où le résultat.

Exercice 12. G### Effectuer la division euclidienne de 3X4−2X3+X2+1 par (X+1) et par (X+1)2.

Correction
En posant la division euclidienne, on trouve que

3X4 +X2 − 2X3 + 1 = (3X3 − 5X2 + 6X − 6)(X + 1) + 7.

En posant la deuxième division euclidienne, on trouve

3X4 +X2 − 2X3 + 1 = (3X2 − 8X + 14)(X − 1)2 + (−20X − 13)

Remarque : les restes s’obtiennent facilement avec la formule de Taylor !

Exercice 13.  ## Déterminer l’ensemble des unités de l’anneau (K[X],+,×).

Correction
Soit P une unité de K[X]. On dispose alors de Q tel que PQ = 1, donc deg(P ) + deg(Q) = 0, donc,
comme P et Q sont non nuls, deg(P ) = deg(Q) = 0, donc P = λ ∈ K∗. Réciproquement, tout scalaire
non nul est un un inversible de K[X].
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Exercice 14. « Équations différentielles » polynomiales   #

1. Résoudre l’équation (X − 1)P ′ +XP = 1 +
X3

2
.

2. Résoudre l’équation 4P = (X − 1)P ′ + P ′′.

Exercice 15.  ## En utilisant un bon produit de polynômes, simplifier
k∑
`=0

(
n

`

)(
p

k − `

)
.

Correction

Posons ck =

k∑
`=0

(
n

`

)(
p

k − `

)
.On reconnaît ici un produit de Cauchy. Posons a` =

(
n

`

)
et bn =

(
p

`

)
.

Alors si P (X) =
∑
`>0

a`X
` et Q(X) =

∑
`>0

b`X
` (les sommes sont en fait finies), alors ck est le terme de

degré k de P (X)Q(X). Simplifions les expressions de P et Q :

P (X) =
∑
`>0

a`X
` =

n∑
`=0

(
n

`

)
X` = (X + 1)n,

Q(X) = (1 +X)p,

donc R(X) = (1 +X)n+p. On en déduit que ck =

(
n + p

k

)
, donc

k∑
`=0

(
n

`

)(
p

k − `

)
=

(
n + p

k

)
.

Exercice 16. Une identité.   # Soient n ∈ N et k ∈ J0, nK. On pose : S =

n∑
i=k

(
i

k

)
et P =

n∑
i=k

(X+1)i .

1. Exprimer S en fonction de P (k)(0).

2. En déduire S.

Exercice 17.  ## Déterminer le reste dans la division euclidienne de X4−X+a par X2−aX+1. En déduire
un critère de divisibilité de X4 −X + a par X2 − aX + 1.

Correction
On écrit

X4 −X + a = (X2 − aX + 1)(X2 + aX + (a2 − 1)) + (a2 − a − 1)((1 + a)X − 1),

ce reste est nul si et seulement si a2 − a − 1 = 0, i.e. a =
1±
√

5

2

Exercice 18.   G# Montrer que pour tout n il existe un unique polynôme Pn tel que

Pn(X)− P ′n(X) = Xn,

et déterminer une expression des coefficients de Pn.
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Correction
Utilisons les systèmes linéaires pour résoudre ce problème. Soit n dans N. Si P est solution de l’équation

alors nécessairement deg(P ) = n. Écrivons alors P (X) =

n∑
k=0

akX
k . Alors P ′(X) =

n−1∑
k=0

ak+1(k + 1)Xk ,

donc

Pn(X)− P ′n(X) = anX
n +

n−1∑
k=0

(ak − ak+1(k + 1))Xk .

En identifiant les coefficients de cette expression avec ceux de Xn, on obtient



a0 −a1 = 0

a1 −2a2 = 0

a2 −3a3 = 0
. . .

. . .

an−1 −nan = 0

an = 1

, i.e.



an = 1

an−1 = nan = n

an−2 = (n − 1)an−1 = n(n − 1)

...

ak =
n!

k!
...

a0 = n!

On en déduit que nécessairement, Pn =

n∑
k=0

n!

k!
Xk . Vérifier que Pn − P ′n = Xn est alors immédiat.

Exercice 19.    Soit P un polynôme à coefficients entiers. On note P (X) =

n∑
k=0

ak . On appelle contenu

de P et on note cont(P ) le pgcd des ak .

1. Soient P et Q deux polynômes tels que cont(P ) = 1. Soit R = PQ. Soit p un facteur premier de
cont(R)

(i) On suppose que le coefficient constant de P est premier avec p. Montrer que p divise tous les
coefficients de Q.

Correction

Écrivons que P (X) =

+∞∑
k=0

akX
k , Q(X) =

+∞∑
k=0

bkX
k et R(X) =

+∞∑
k=0

ckX
k . Démontrons par

récurrence forte sur k que p divise bk .
Initialisation. p divise c0 = a0b0. Mais p ∧ a0 = 1 donc, par le théorème de Gauss, p divise
b0.
Hérédité. On suppose que p divise b0, . . . , bk pour un certain k . Mais p divise ck+1 =
k+1∑
`=0

a`bk+1−`. Comme p divise b0, . . . , bk , p divise les k + 1 premiers termes de la somme, et

donc aussi son dernier terme, i.e. a0bk+1. Comme p ∧ a0 = 1, p divise bk+1.

(ii) Dans le cas contraire, se ramener au cas précédent.

Correction

Si p divise a0, il y a tout de même un plus petit entier k tel que p soit premier avec ak (sinon
p diviserait tous les ai donc le pgcd des ai donc le contenue de P , absurde car le contenu de
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P est égal à 1). Mais alors on fait la même démonstration que précédemment. Démontrons
par récurrence forte sur k que p divise bk .

Initialisation. p divise cm =

m∑
`=0

a`bm−`. Comme p divise tous les a` pour ` allant de 0 à

m−1, p divise amb0 donc p divise b0. Hérédité. L’hérédité se fait alors de la même manière.

(iii) En déduire que cont(Q) = cont(R).

Correction

Déjà, on sait que cont(Q) divise tous les coefficients de Q donc, par la formule du produit
de Cauchy, divise tous les coefficients de R, donc divise cont(R).
Mais on sait aussi que si p est un facteur premier de cont(R), alors il divise tous les coefficients
de Q. On peut donc, si p est un facteur premier de cont(R), écrire l’égalité R = PQ sous
la forme pR2 = pPQ2 avec R2 et Q2 obtenus en divisant tous les coefficients de R et de Q
par p. En simplifiant par p, en réitérant (récurrence) et en décomposant cont(R) en facteurs
premiers, on parvient donc à montrer que cont(R) divise tous les coefficients de Q donc
cont(Q).
D’où l’égalité !

(iv) Déterminer de manière générale cont(PQ).

Correction

Si P est quelconque, on écrit P = cont(P )S avec cont(S) = 1. On en déduit que

cont(PQ) = cont(cont(P )SQ) = cont(P )cont(SQ) = cont(P )cont(Q).

2. Soit R dans Z[X] tel qu’il existe P et Q dans Q[X] tels que R = PQ. Montrer qu’il existe A et B dans
Z[X] tels que R = AB.

Correction

Écrivons tous les coefficients de P et de Q sous formes irréductibles, posons p le ppcm des
dénominateurs des coefficients de P et q celui des coefficients de Q. Alors S = pP ∈ Z[X] et
T = qQ ∈ Z[X]. Mais alors

pqR = ST, donc pqcont(R) = cont(S)cont(T ).

Donc pq divise cont(S)cont(T ), donc on peut écrire pq = ab avec a qui divise cont(S) et b qui

divise cont(T ). Donc si A =
1

a
S et B =

1

b
T , on a A ∈ Z[X], B ∈ Z[X] et R = AB.

3 Racines
Exercice 20.  ##

1. Pourquoi n’y a-t-il pas de polynôme réel P tel que ∀x ∈ R, P (x) = sin(x) ?

Correction

P s’annulerait une infinité de fois (en les 2nπ) et serait donc nul, absurde.
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2. Pourquoi n’y a-t-il pas de polynôme réel P tel que ∀x ∈ [0, 2π], P (x) = sin(x) ?

Correction

P vérifierait P ′′ = −P , absurde si P non nul.

3. Pourquoi n’y a-t-il pas de polynôme réel P tel que ∀x ∈ R, P (x) = bxc ?

Correction

P vérifierait ∀n ∈ N, P (n) = n, donc P (X) = X, absurde.

4. Pourquoi n’y a-t-il pas de polynôme complexe P tel que ∀z ∈ C, P (z) = z ?

Correction

P vérifierait ∀x ∈ R, P (x) = x , donc P (X) = X, absurde.

Exercice 21.   # Donner une condition nécessaire et suffisante sur λ ∈ C pour que X3 − 7X + λ admette
une racine qui soit le double d’une autre. Résoudre alors l’équation.

Correction
On veut qu’il existe α tel que

α3 − 7α+ λ = 0,

et
8α3 − 14α+ λ = 0,

i.e.
α3 − 7α = 8α3 − 14α,

i.e. 7α3 = 7α, i.e. α2 = 1, ou α = 0, i.e. α ∈ {0, 1,−1}. Il faut donc que λ soit tel que 0, 1 ou −1 soit
racine du polynôme. On a donc λ = 0 (0 est alors solution), λ = 6 (1 est alors solution), ou λ = −6

(−1 est solution).

Exercice 22.   # Résoudre les systèmes suivants dans C3 :

(1)


x + y + z = 1

x2 + y2 + z2 = 3

xyz = 2

(2)


x + y + z = 0

x2 + y2 + z2 = 0

x3 + y3 + z3 = 3

Exercice 23.   # Soit P =

n∑
k=0

akX
k avec an 6= 0. Soit ω une racine de P . Montrer que

|ω| 6 1 +

n−1∑
k=0

∣∣∣∣akan
∣∣∣∣ .

Correction
Soit ω une racine de P . Si |ω| 6 1, l’inégalité est évidente. Si ce n’est pas le cas, on sait que

n∑
k=0

akω
k = 0,
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i.e.

anω
n = −

n−1∑
k=0

akω
k ,

donc

ω = −
n−1∑
k=0

ak
an
ωk−(n−1).

Donc, par l’inégalité triangulaire,

|ω| 6
n−1∑
k=0

∣∣∣∣akan
∣∣∣∣ |ω|k−(n−1).

Or, |ω| > 1, donc, pour k 6 n − 1, |ω|k−(n−1) 6 1, donc

|ω| 6
n−1∑
k=0

∣∣∣∣akan
∣∣∣∣ 6 1 +

n−1∑
k=0

∣∣∣∣akan
∣∣∣∣ ,

d’où le résultat.

Exercice 24.    Déterminer les polynômes P de C[X] qui vérifient P (X2) = P (X)P (X + 1).

Correction
Analyse. Soit P un tel polynôme. Alors si α est racine de P , α2 l’est aussi, de même que α− 12. Or,
si α ∈ C et α 6= 0 ou α 6= 1, alors l’un des deux nombres α ou α − 1 est de module différent de 0 ou
de 1. Donc l’une des deux suites (αn)n∈N ou ((α− 1)n)n∈N est infinie, donc P est nul (le polynôme nul
convient en effet).
Sinon, si P est non nul, ses deux seules racines possibles sont 1 et 0, donc P (X) = Xa(X − 1)b. Or,
P (X2) = X2a(X2 − 1)b = X2a(X − 1)b(X + 1)b. Ensuite, P (X)P (X + 1) = Xa(X − 1)b(X + 1)aXb =

Xa+b(X − 1)b(X + 1)a. Donc nécessairement, a = b. Donc P est nécessairement de la forme

P (X) = Xa(X − 1)a,

avec a ∈ N.
Synthèse évidente.

4 Arithmétique et polynômes irréductibles
Exercice 25. G### Déterminer la décomposition en produit d’irréductibles sur R et sur C de

(i) X4 + 2X2 + 1

Correction

X4 + 2X2 + 1 = (X2 + 1)2, il s’agit de la décomposition en produit d’irréductibles sur R. Mais on
a aussi X4 + 2X2 + 1 = (X + i)2(X − i)2, décomposition en produit d’irréductibles sur C.

(ii) X6 +X3 + 1

(iii) X3 − 27

Correction

X3 − 27 = (X − 3)(X2 + 3X + 9), décomposé sur R car 32 − 4 × 9 < 0. Mais aussi
X3 − 27 = (X − 3)(X − 3j)(X − 3j2) sur C.

(iv) 1 + X + X2 + · · · + Xn−1 (sur C unique-
ment)

Correction

1 +X + · · ·+Xn−1 =
Xn − 1

X − 1
=

∏
ω∈Un\{1}

(X − ω).

(v) X2n+1 + 1.
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Exercice 26. 1. Rappeler la décomposition en produits d’irréductibles de Xn − 1.

Correction

On sait que Xn − 1 =

n−1∏
k=0

(X − e
2ikπ
n ).

2. En déduire la décomposition en produits d’irréductibles de 1 +X + · · ·+Xn−1.

Correction

On sait que 1 +X + · · ·+Xn−1 =

n−1∏
k=1

(X − e
2ikπ
n ).

3. Calculer
n−1∏
k=1

sin

(
kπ

n

)
.

Correction

On évalue le polynôme précédent en 1 et on obtient

n =

n−1∏
k=1

(1− e
2ikπ
n )

=

n−1∏
k=1

e
ikπ
n (e−

ikπ
n − e

ikπ
n )

=

n−1∏
k=1

e
ikπ
n (−2i) sin

kπ

n

=

n−1∏
k=1

e
ikπ
n 2n−1(−i)n−1

n−1∏
k=1

sin
kπ

n

= e
i(n−1)π
2 2n−1(−i)n−1

n−1∏
k=1

sin
kπ

n

= 2n−1
n−1∏
k=1

sin
kπ

n

Donc
n−1∏
k=1

sin

(
kπ

n

)
=

n

2n−1
.

4. Pour θ ∈ R, calculer
n−1∏
k=0

sin

(
kπ

n
+ θ

)
.

Correction

On fait de même en évaluant en e−2iθ (en supposant θ 6= 0[2π]) :
n−1∑
k=0

(e−2iθ)k =
1− e−2inθ

1− e−2iθ
= e−i(n−1)θ

sin(nθ)

sin(θ)
.
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Mais

n−1∑
k=0

(e−2iθ)k =

n−1∏
k=1

(e−2iθ − e
2ikπ
n )

=

n−1∏
k=1

ei
kπ
n e−iθ(ei(−θ−

kπ
n ) − ei(θ+

kπ
n ))

=

n−1∏
k=1

e
ikπ
n e−iθ(−2i) sin

(
kπ

n
+ θ

)

= e−i(n−1)θe
i(n−1)π
2 2n−1in−1

n−1∏
k=1

sin

(
kπ

n
+ θ

)

= e−i(n−1)θ2n−1
n−1∏
k=1

sin

(
kπ

n
+ θ

)
.

Donc
n−1∏
k=1

sin

(
kπ

n
+ θ

)
=

sin(nθ)

2n−1 sin(θ)

Exercice 27.  ## Calculer le PGCD et le PPCM de 2X4+3X3+4X2+2X+1 et de 3X3+4X2+4X+1.

Correction
On détermine ces deux quantités par l’algorithme d’Euclide, et on trouve un pgcd égal à X2 +X + 1 et
un ppcm égal à 6X5 + 11X4 + 15X3 + 10X2 + 5X + 1.

Exercice 28.  ## Montrer que pour tout entier naturel n,

nXn+2 − (n + 2)Xn+1 + (n + 2)X − n

est divisible par (X − 1)3.

Correction
Le plus simple est de voir ce genre d’exercice à l’aide des racines. Si on pose P (X) = nXn+2 − (n +

2)Xn+1 + (n + 2)X − n, il suffit de montrer que 1 est racine de multiplicité 3 de P . Or, P (1) =

n − (n + 2) + n + 2 − n = 0. Ensuite, P ′(1) = (n + 2)n − (n + 2)(n + 1) + (n + 2) = 0. Enfin,
P ′′(1) = (n + 2)(n + 1)n − (n + 2)(n + 1)n = 0. Donc 1 est racine de P de multiplicité 3, d’où le
résultat.

Exercice 29.   # Montrer que pour tous n ∈ N∗ et θ ∈ R, le polynôme Xn sin θ−X sin(nθ) + sin((n− 1)θ)

est divisible parX2 − 2X cos θ + 1

Exercice 30.    On cherche à démontrer le résultat suivant : si P ∈ R[X] est positif sur R, alors on
dispose de A et B dans R[X] tels que P = A2 + B2.

1. Démontrer que {A2 + B2, (A,B) ∈ R[X]} est stable par produit.

2. En considérant la décomposition de P en produit d’irréductibles, en déduire le résultat.

Exercice 31.   # Soient A et B deux polynômes de K[X]. Montrer que A et B sont premiers entre eux si
et seulement si AB et A+ B sont premiers entre eux.
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Correction
Cet exercice est là pour montrer que parfois, les exercices utilisent des raisonnements en tout point
identiques aux raisonnements d’arithmétique sur les entiers. Déjà, si AB et A + B sont premiers entre
eux, tout diviseur commun à A et B divise AB et A + B, donc divise (AB) ∧ (A + B) = 1, donc A et
B sont premiers entre eux.
Ensuite, si A et B sont premiers entre eux, on montre que A+B est premier avec A : on écrit AU+BV = 1

une relation de Bézout. Alors A(U − V ) + (A + B)V = 1, donc A + B est premier avec A. De même
A+ B est premier avec B, donc il est premier avec AB.
Autre méthode : si α est une racine complexe de AB, c’est soit une racinde de A, soit de B. α est donc
une racine de A+ B ssi A ET B s’annulent en α.

5 Polynômes célèbres
Exercice 32. Un exercice sur les polynômes de Lagrange.  G##
Soient L1, . . . , Ln les polynômes de Lagrange associés à 1, . . . , n.

1. Déterminer le coefficient dominant de Lk pour k ∈ J1, nK.

Correction

Par les formules du cours, on sait que

Lk(X) =

∏
16i6n
i 6=k

(X − i)∏
16i6n
i 6=k

(k − i) .

Le coefficient dominant de Lk(X) est donc

1∏
16i6n
i 6=k

(k − i) .

Or ∏
16i6n
i 6=k

(k − i) =
∏

16i6k−1
i 6=k

(k − i)
∏

k+16i6n
i 6=k

(k − i).

En posant ` = k − i , on a ∏
16i6k−1

(k − i) =
∏

16`6k−1
` = (k − 1)!

et, en posant ` = i − k , ∏
k+16i6n

(k − i) =
∏

16`6n−k
−` = (−1)n−k(n − k)!

Donc le coefficient dominant de Lk est

(−1)n−k
1

(k − 1)!(n − k)!
=

(−1)n−k

(n − 1)!

(
n − 1

k − 1

)
.

2. Déterminer l’expression d’un polynôme P de degré n − 1 tel que : ∀k ∈ J1, nK, P (k) = kn−1.

• En donnant directement l’expression évidente.
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• À l’aide des L1, . . . , Ln.

Correction

Un polynôme évident est P (X) = Xn−1. En utilisant les polynômes Lk , on a le polynôme interpo-
lateur

Q(X) =

n∑
k=1

kn−1Lk(X).

3. En déduire une expression simplifiée de
n∑
k=0

(
n

k

)
(−1)n−kkn.

Correction

Par unicité du polynôme interpolateur, on a P = Q. En particulier leurs coefficients dominants
sont égaux, donc

1 =

n∑
k=1

kn−1
(−1)n−k

(n − 1)!

(
n − 1

k − 1

)
.

Or,

kn−1
(−1)n−k

(n − 1)!

(
n − 1

k − 1

)
= kn

(−1)n−k

n!

n

k

(
n − 1

k − 1

)
= kn

(−1)n−k

n!

(
n

k

)
.

Donc
n∑
k=1

(−1)n−k
(
n

k

)
kn = n!

Exercice 33. Polynômes de Tchebycheff, suite.   # Cet exercice a besoin du premier exercice sur les
polynômes de Tchebycheff.
Si f est une fonction définie sur [−1, 1], on définit ||f ||∞ = sup

x∈[−1,1]
|f (x)|.

1. Calculer ||Tn||∞.

Correction

Si x ∈ [−1, 1], on dispose de θ tel que x = cos(θ), donc Tn(x) = Tn(cos(θ)) = cos(nθ) donc
|Tn(x)| 6 1. De plus, Tn(1) = Tn(cos(0)) = cos(n.0) = cos(0) = 1. Donc |Tn(x)| 6 1 et on
dispose de x0 tel que |Tn(x0)| = 1. Donc ||Tn||∞ = 1.

2. Montrer que ∀n ∈ N, | sin nu| 6 n| sin u|.

Correction

On démontre par récurrence que Pn : ∀u, | sin(nu)| 6 n| sin(u)|.
Initialisation. Pour n = 0, | sin(0.u)| = 0 6 0.| sin(u)|.
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Hérédité. Supposons que pour un certain n, ∀u, | sin(nu)| 6 n| sin(u)|. Soit u ∈ R. Alors

| sin((n + 1)u)| = | sin(nu) cos(u) + sin(u) cos(nu)|
6 | sin(nu) cos(u)|+ | sin(u) cos(nu)|
6 | sin(nu)|+ | sin(u)|
6 n| sin(u)|+ | sin(u)| par hypothèse de récurrence.

6 (n + 1)| sin(u)|.

D’où l’hérédité, et le résultat par récurrence.

3. En déduire ||T ′n||∞ = n2.

Correction

On sait que Tn(cos(θ)) = cos(nθ), donc − sin(θ)T ′n(cos(θ)) = −n sin(nθ), donc

| sin(θ)T ′n(cos(θ))| = |n sin(nθ)| 6 n2| sin(θ)|,

donc |T ′n(cos(θ))| 6 n2, donc, pour tout x dans [−1, 1], |Tn(x)| 6 n2
Ensuite, calculons |T ′n(1)| = |T ′n(cos(0))|. Par continuité de T ′n, T

′
n(cos(θ)) ∼θ→0 T ′n(0), donc

− sin(θ)T ′n(cos(θ)) ∼ −θT ′n(0) et −n sin(nθ) ∼ −n2θ, donc −θT ′n(0) ∼ −n2θ, donc Tn(0) ∼ n2
donc |Tn(0)| = n2.

4. Montrer que ∀r ∈ R∗, Tn
(
r + r−1

2

)
=
rn + r−n

2
.

Correction

Montrons par récurrence double que pour tout n ∈ N, la propositon Pn : ∀r ∈ R∗, Tn
(
r + r−1

2

)
=

rn + r−n

2
est vraie.

Initialisation. T0(X) = 1 donc T0

(
r + r−1

2

)
=

r0 + r−0

2
. De même, T1(X) = X donc

T1

(
r + r−1

2

)
=
r + r−1

2
.

Hérédité. On suppose Pn et Pn+1 vraies pour un certain n. Alors

Tn+1

(
r + r−1

2

)
= 2

(
r + r−1

2

)
Tn+1

(
r + r−1

2

)
− Tn

(
r + r−1

2

)
= 2

(
r + r−1

2

)
rn+1 + r−n−1

2
−
rn + r−n

2

=
rn+2 + r−n

2
+
rn + r−n−2

2
−
rn + r−n

2

=
rn+2 + r−n−1

2
,

d’où la proposition et le résultat !

5. Soit un réel x ∈ [1,+∞[.

(i) Montrer qu’il existe r ∈ R∗, tel que x =
r + r−1

2
.
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Correction

L’équation x =
r + r−1

2
est équivalente à 2rx = r2+ 1, i.e. r2−2xr + 1 = 0, de discriminant

2
√
x2 − 1, bien défini car x > 1, donc r = x ±

√
x2 − 1 sont deux solutions de l’équation.

(ii) En déduire que 1 6 Tn(x) 6
(
x +

√
x2 − 1

)n
.

Correction

On sait que x =
r + r−1

2
, donc r2 − 2xr + 1 = 0, de discriminant 2

√
x2 − 1, donc r =

x ±
√
x2 − 1. Prenons r = x +

√
x2 − 1 par exemple. Alors un bref calcul montre que

1

r
= x −

√
x2 − 1 ! ! (un autre argument permet de voir que

1

r
vérifie la même équation que

r). En remplaçant r et
1

r
dans l’expression de la 11, on obtient que

Tn(x) = Tn

(
r + r−1

2

)
=
rn + r−n

2
=

(x +
√
x2 − 1)n + (x −

√
x2 − 1)−n

2
6

2(x +
√
x2 − 1)

2
,

d’où le résultat. De plus, comme r > 0, Tn(x) =
rn + r−n

2
= ch(n ln(r)) > 1.

6. En dérivant l’égalité Tn(cos t) = cos nt valable pour tout réel t ∈ [0, π], trouver une équation différen-
tielle linéaire homogène du second ordre vérifiée sur R par Tn.

Correction

On sait que Tn(cos(θ)) = cos(nθ), donc − sin(θ)T ′n(cos(θ)) = −n sin(nθ), donc

− cos(θ)T ′n(cos(θ)) + sin2(θ)T ′′n (cos(θ)) = −n2 cos(nθ) = −n2Tn(cos(θ)),

i.e.
− cos(θ)T ′n(cos(θ)) + (1− cos2(θ))T ′′n (cos(θ)) = −n2Tn(cos(θ))

, i.e.
(1− cos2(θ))T ′′n (cos(θ))− cos(θ)T ′n(cos(θ)) + n2Tn(cos(θ)) = 0,

i.e. , pour tout x dans [−1, 1],

(1− x2)T ′′n (x)− xT ′n(x) + n2Tn(x) = 0,

donc
(1−X2)T ′′n (X)−XT ′n(X) + n2Tn(X) = 0.

7. Soit k ∈ N, k 6 n. Déduire de la question précédente que T (k)n (1) =
n

n + k

(n + k)!

(n − k)!

2kk!

(2k)!
. Montrer

que T (k)n (−1) = (−1)n+kT (k)n (1).

Correction

Démonstrons le résultat par récurrence sur k .

Initialisation. Déjà T (0)n (1) = 1 =
n

(n + 0)

(n + 0)!

(n − 0)!

20.0!

(2.0)!
= 1. Hérédité. Supposons que pour

un certain k , T (k)n (1) =
n

n + k

(n + k)!

(n − k)!

2kk!

(2k)!
.
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En dérivant k fois l’équation différentielle précédente (et en utilisant la formule de Leibniz), on
obtient (

k

0

)
(1−X2)T (k+2)n (X)−

(
k

1

)
2XT (k+1)n (X)−

(
k

2

)
2T (k)n (X)

−
(
k

0

)
XT (k+1)n (X)−

(
k

1

)
T (k)n (X) + n2T (k)n (X) = 0,

donc, en évaluant en 1,

−2kT (k+1)n (1)− k(k − 1)T (k)n (1)− T (k+1)n (1)− kT (k)n (1) + n2T (k)n (1) = 0,

donc
−(2k + 1)T (k+1)n (1) + (n2 − k2)T (k)n (1) = 0,

donc

T (k+1)n (1) =
1

2k + 1
(n − k)(n + k)T (k)n (1)

=
1

2k + 1
(n − k)(n + k)

n

n + k

(n + k)!

(n − k)!

2kk!

(2k)!

=
1

2k + 1

2(k + 1)

(2k + 2)
n

(n + k + 1)

(n + k + 1)

(n + k)!

(n − (k + 1)!

2kk!

(2k)!

=
n

n + k + 1

(n + k + 1)!

(n − (k + 1)!

2k+1(k + 1)!

(2(k + 1))!
,

d’où l’hérédité et le résultat.
En fait le dernier résultat est stupide. Si n est pair, Tn est pair donc Tn(−x) = Tn(x) pour tout x
donc en dérivant k fois (−1)kT (k)n (−x) = Tn(x), i.e. en évaluant en 1, Tn(−1) = (−1)−kTn(1) =

(−1)kTn(1) = (−1)k+nTn(1) car n est pair. De même si n est impair.

Exercice 34. Polynômes de Legendre.   # Pour tout entier naturel n on pose

Ln =
n!

(2n)!

(
(X2 − 1)n

)(n)
1. Montrer que Ln est un polynôme unitaire de degré n.

Correction

Ln est la dérivée n-ième d’un polynôme de degré 2n, donc il est de degré n. Son coefficient

dominant est celui de la dérivée n-ième de
n!

(2n)!
X2n, i.e.

n!

(2n)!

(2n − n)!

n!
= 1, donc Ln est bien

unitaire.

2. Montrer que

∀Q ∈ Rn−1[X],

ˆ 1
−1
Ln(t)Q(t)dt = 0

Correction

Posons P (X) = (X2 − 1)n. Soit Q dans R[X]. Montrons par récurrence que pour tout entier k
dans J0, nK, ˆ 1

−1
P (n)(x)Q(x)dx = (−1)n−k

ˆ 1
−1
P (n−k)(x)Q(k)(x)dx.
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Initialisation évidente pour k = 0.
Hérédité. Supposons que pour un certain k ∈ J0, n − 1K,

ˆ 1
−1
P (n)(x)Q(x)dx = (−1)k

ˆ 1
−1
P (n−k)(x)Q(k)(x)dx.

Effectuons une IPP en posant u′(x) = P (n−k)(x), v(x) = Q(k)(x), donc u(x) = P (n−(k+1)) et
v ′(x) = Q(k+1)(x). Donc

ˆ 1
−1
P (n−k)(x)Q(k)(x)dx =

[
P (n−(k+1))Q(k)(x)

]
− (−1)k

ˆ 1
−1
P (n−(k+1))(x)Q(k+1)(x)dx.

Or, −1 et 1 sont des racines de multiplicité n de P , donc si 0 6 k 6 n − 1, P (n−(k+1))(−1) =

P (n−(k+1))(1) = 0. Donc

ˆ 1
−1
P (n−k)(x)Q(k)(x)dx = −(−1)k

ˆ 1
−1
P (n−(k+1))(x)Q(k+1)(x)dx

= (−1)k+1
ˆ 1
−1
P (n−(k+1))(x)Q(k+1)(x)dx,

le résultat est donc prouvé. En particulier,
ˆ 1
−1
P (n)(x)Q(x)dx = (−1)n

ˆ 1
−1
P (0)(x)Q(n)(x)dx,

et donc ˆ 1
−1
Ln(x)Q(x)dx = (−1)n

ˆ 1
−1

n!

(2n)!
(x2 − 1)nQn(x)dx = 0

si Q est dans Rn−1(X). Le résultat est donc démontré.

3. En déduire que Ln possède n racines simples toutes dans ] − 1, 1[. On utilisera sans la démontrer la
propriété suivante : toute fonction continue positive sur un segment d’intégrale nulle sur ce segment
est nulle.

Correction

Supposons que Ln s’annule strictement moins de n fois sur ]−1, 1[. Si Ln garde un signe constant
(par exemple Ln > 0, on sait par la question précédente que

ˆ 1
−1
Ln(x)dx =

ˆ 1
−1
Ln × 1dx = 0.

Or l’intégrale sur un segment d’une fonction positive est nulle si et seulement si cette fonction
est nulle, donc Ln serait nulle sur ] − 1, 1[, donc Ln s’annulerait une infinité de fois et serait le
polynôme nul, impossible.
Supposons que Ln change de signe en α1, α2, . . . , αr , avec r < n. Supposons de plus que sur
]αr , 1[, Ln soit positive. Considérons alors

Q(X) =

r∏
k=1

(X − αk).

Alors Q est du signe de Ln sur chacun des intervalles ]αi , αi+1[. De plus, comme r < n, Q ∈

Rn−1[X], donc
ˆ 1
−1
Ln(x)Q(x)dx = 0, et LnQ est positive sur ] − 1, 1[. Donc LnQ est nulle sur
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]− 1, 1[, donc LnQ est le polynôme nul, donc Ln est le polynôme nul, absurde.
Donc Ln possède n racines dans ]− 1, 1[.

Exercice 35. Polynômes cyclotomiques.    On définit l’ensemble des racines primitives n-ièmes de l’unité
par Un = {e

2ikπ
n , k ∈ J0, n − 1K et k ∧ n = 1}.

1. Que vaut ∏
ω∈Un

(X − ω)?

Correction

Par le cours, on sait que
∏
ω∈Un

(X − ω) = Xn − 1.

On appelle n-ième polynôme cyclotomique le polynôme

Φn(X) =
∏
ω∈Un

(X − ω) =
∏

k∈J0,nK
k∧n=1

(
X − e

2ikπ
n

)
.

2. Soit p un nombre premier. Que vaut Φ(p)(X) ?

Correction

Si p est un nombre premier, tout nombre entre 0 et p − 1 est premier avec p. Donc∏
k∈J0,pK
k∧p=1

(
X − e

2ikπ
p

)
=
∏
ω∈Up
ω 6=1

(X − ω) =
Xp − 1

X − 1
= 1 +X + · · ·+Xp−1.

3. On veut montrer que
Xn − 1 =

∏
d |n

Φd(X).

(i) Soit d un entier divisant n, montrer que toute racine de Φd est une racine n-ième de l’unité.
Réciproquement, montrer que toute racine n-ième de l’unité est une racine primitive δ-ième de
l’unité pour un certain δ divisant n.

Correction

Si ω est une racine de Φd , alors ωd = 1. Or n = pd avec p ∈ N, donc ωn = ωpd = (ωd)p = 1,
donc ω est une racine n-ième de l’unité. Réciproquement, si ω est racine n-ième de l’unité,
alors soit d = min{k, ωk = 1}. Alors d |n : si ce n’était pas le cas, on écrirait n = dq + r

avec 0 < r < d , et ωr = 1 ce qui contredirait la minimalité de r . Ensuite ωd = 1, et ω ∈ Ud .
En effet, si on avait ω = e

2ikπ
d avec k ∧ d = r 6= 1, alors on écrirait k = ra, d = rb, et donc

kb = ad , donc ωb = 1, avec b < d , absurde.

On a donc montré que Xn − 1 et
∏
d |n

Φd(X) avaient les mêmes racines.

(ii) Montrer que Xn − 1 est à racines simples.
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Correction

Cf cours, on connaît la décomposition de Xn − 1.

(iii) Montrons que
∏
d |n

Φd(X) est à racines simples.

• Soient d 6= δ deux entiers. Montrer que Ud ∩ Uδ = ∅.

Correction

Soit ω ∈ Ud ∩ Uδ. Alors on dispose de k et ` tels que e
2ikπ
d = e

2i`π
δ , avec k < d et ` < δ,

donc
k

d
=
`

δ
,

donc kδ = d`. Comme k ∧ d = 1, k |` par le théorème de Gauss. De même, δ ∧ ` = 1,
donc par le théorème de Gauss, `|k . Donc k = `, or k 6= 0, donc δ = d , absurde !

• En déduire que
∏
d |n

Φd(X) est à racines simples.

Correction

On en déduit que toutes les racines des Φd pour d |n sont deux à deux distinctes, donc
le polynôme

∏
d |n

Φd est scindé à racines simples.

(iv) Conclure.

Correction

On en déduit que les racines de Xn − 1 et de
∏
d |n

Φd sont communes et toutes simples, donc

les deux polynômes sont égaux.

4. Soit ϕ l’indicatrice d’Euler : ϕ(n) est le nombre d’entiers inférieurs à n et premiers avec n. Montrer que
n =

∑
d |n

ϕ(d).

Correction

En égalisant les degrés, on obtient n =
∑
d |n

Card(Ud) =
∑
d |n

ϕ(d).

Indications
1. 1. Utiliser le théorème de Rolle.

2. Utiliser le fait qu’un polynôme est à racines simples ssi il est premier avec son polynôme dérivé.

3. Utiliser le théorème de Rolle et compter les racines de P ′ avec multiplicité.

2. 1. Penser à distinguer les cas a = b et a 6= b. Le premier cas se résout avec une formule de Taylor. Le second
se résout à la main, en adaptant la preuve du « reste de la division euclidienne par X − α »

2. Utiliser le résultat précédent et l’exponentielle complexe.

4. L’idée fondamentale est de penser aux relations coefficients-racines ! Dans le premier système, on a facilement
la somme des racines et, si l’on multiplie la dernière équation par xyz , on a une relation entre le produit des
racines et la quantité xy + yz + zx ! Enfin, remarquer ce que vaut x2 + y 2 + z2 − 2(xy + yz + zx).
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5. 1. On pourra remarquer que cos(nθ) est la partie réelle de (cos(θ) + i sin(θ))n.

2. Utiliser le fait que deux polynômes égaux en une infinité de points sont égaux.

3. Utiliser la formule trouvée en 1.

4. Écrire cos((n + 1)θ) en fonction de cos(nθ) et cos((n + 2)θ).

5.

6. Regarder les points d’annulation de cos(nθ).

7. Conseil important : référez-vous au chapitre d’arithmétique des entiers ! L’idée est que tout a déjà été fait dans
ce chapitre !

8. 1. Commencer à factoriser comme on voudrait et utiliser l’identité de Bernoulli.

2. Utiliser l’algorithme d’Euclide.

10. 1. Lagrange

2. Lagrange

3. Remarquer que pour tout z dans U, |P (z)|2 = 1. On aura intérêt à considérer, si P est de degré n, le

polynôme Q(X) = P (X)XnP

(
1

X

)
, en s’assurant que l’on définit bien un polynôme de cette manière.

11. Faire un raisonnement sur le degré.

12. Faire le calcul comme indiqué en cours. Ou utiliser la formule de Taylor.

13. Revoir ce qu’est l’ensemble des unités d’un anneau, puis faire un raisonnement sur le degré.

14. Bien sûr, il ne s’agit pas de résoudre les équations différentielles comme au chapitre 7 ! Regarder le degré,
regarder le coefficient dominant, les coefficients constants, etc !

15. Reconnaître le coefficient d’ordre k du produit (X + 1)n(X + 1)p.

16. Le même que le précédent, en plus dur !

1. Dériver la somme, vous devriez trouver ce qu’il faut !

2. P fait penser à une somme géométrique... essayez d’écrire ce que vaut XP (X) = ((X + 1) − 1)P (X).
Puis, dériver cette expression k + 1 fois !

17. Poser la division euclidienne et chercher une CNS pour que ce reste soit nul.

18. Résoudre un système linéaire !

20. Raisonner sur les racines, ou bien la dérivabilité.

21. Écrire un système d’équations que doit vérifier α.

22. Inspirez-vous fortement de l’exercice 4 !

23. Prendre ω une racine de P . Si elle est de module 6 1, c’est bon. Sinon, utiliser le fait que |ωk | 6 |ω|n pour tout
k 6 n.

24. Montrer que P est nul ou de la forme Xa(X − 1)a.
25. Reconnaître des racines de l’unité.

26. Utiliser la décomposition obtenue en question 2, l’évaluer en 1, en e−2iθ...

27. Utiliser l’algorithme d’Euclide ou une relation de Bézout.

28. Utiliser les racines !

29. De même, déterminer les racines du polynôme qui est censé diviser l’autre !

31. Exercice fait en arithmétique des entiers relatifs. Utiliser des relations de Bézout.

32. Utiliser l’expression vue en cours des polynômes de Lagrange.

33. 1.

2. Faire une récurrence.

3. Montrer que ||Tn||∞ 6 1 puis que cette quantité est atteinte.

4. Faire une récurrence

5. (i)

(ii) Résoudre l’équation du second degré vérifiée par r .

6.
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7. Faire une récurrence

34. 1. Utiliser un calcul de dérivée n-ième.

2. Faire des IPP

3. Question presque faite dans le chapitre de dérivabilité.

35. 1. Utiliser que tout nombre de J1, p − 1K est premier avec p.

2. (i) Utiliser proprement les racines de l’unité.

(ii)

(iii) Utiliser le théorème de Gauss

(iv)

3. Utiliser les degrés.
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