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MPSI 1

Mathématiques
DS 06

Samedi 7 février – 8h-12h

• Durée : 4 heures.

— Prenez 10 minutes pour lire le sujet en entier et décider de la stratégie que vous adopterez.

— Prenez 10 minutes au moins à la fin des 4 heures pour vous relire !

• Toute calculatrice ou appareil électronique est interdit.

• Le sujet est composé d’un exercice et d’un problème.

• Consignes de présentations.

— Les pages doivent être numérotées.

— Les résultats doivent être mis en valeur (encadrés ou soulignés).

— Les questions doivent être numérotées. Une question non numérotée, c’est une question poten-
tiellement non corrigée.

— Les questions doivent être faites dans l’ordre : si vous admettez une question, laissez de la place
à l’endroit où elle est censée être pour y revenir ensuite. Changez de copie ou de page quand vous
changez de grande partie.

• À tout moment, vous pouvez admettre le résultat d’une question pour pouvoir continuer : il suffit de le
préciser clairement sur la copie.

• Si vous voyez ce qui semble être une erreur d’énoncé, indiquez-le sur la copie.

• Laissez de la place dans une marge à gauche pour pouvoir noter plus facilement le devoir.

• Une réponse fausse, si elle ne laisse pas paraître de calculs intermédiaires, compte 0 points ; avec calculs
intermédiaires elle peut rapporter quelques points.

� Bon courage ! �
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Exercice 1. De l’asymptotique, comme promis !.

1. Déterminer le développement limité à l’ordre 4 en 0 de
1

1− x2 ln(cos(x)).

Correction

On calcule :

1

1− x2 ln(cos(x)) =x→0
(
1 + x2 + o(x2)

)
ln

(
1−

x2

2
+
x4

24
+ o(x4)

)
=
x→0

(
1 + x2 + o(x2)

)(
−
x2

2
+
x4

24
−
x4

8
+ o(x4)

)
=
x→0

(
1 + x2 + o(x2)

)(
−
x2

2
−
x4

12
+ o(x4)

)
=
x→0
−
x2

2
−
x4

12
−
x4

2
+ o(x4)

=
x→0

−
x2

2
−
7x4

12
.

2. Déterminer le développement limité à l’ordre 3 en π de
sin(x)

x
.

Correction

On écrit x = π + h. Alors

sin(x)

x
=
sin(π + h)

π + h

=
1

π

− sin(h)
1 + h

π

=
h→0

1

π

(
−h +

h3

6
+ o(h3)

)(
1−

h

π
+
h2

π2
+ o(h2)

)
=
h→0

1

π

(
−h +

h2

π
−
h3

π2
+
h3

6

)
+ o(h3)

=
h→0

−
1

π
h +

1

π2
h2 +

(
1

6π
−
1

π3

)
h3 + o(h3).

On en déduit que

sin(x)

x
=
x→π

1

π
(x − π) +

1

π2
(x − π)2 +

(
1

6π
−
1

π3

)
(x − π)3 + o((x − π)3).

3. Montrer que f : x 7→
(
sin(x)

x

) 1
x

définie sur ]0, π[ se prolonge par continuité en 0.

Étudier la dérivabilité en 0. Dans le cas où la fonction est dérivable, déterminer la position relative de
la courbe et de sa tangente.
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Correction

Il s’agit de déterminer un développement limité à l’ordre 2 de f en 0. On écrit déjà que

f (x) = exp

(
1

x
ln

(
sin(x)

x

))
=
x→0
exp

(
1

x
ln

(
1−

x2

6
+ o(x3)

))
.

Or,

ln

(
1−

x2

6
+ o(x3)

)
= −

x2

6
+ o(x3).

On en déduit que

4

x
ln

(
sin(x)

x

)
= −

x

6
+ o(x2),

d’où

f (x) =
x→0
1−

x

6
+
1

2

x2

36
+ o(x2),

donc f est prolongeable par continuité en 0, en posant f (0) = 1 . Elle est dérivable en 0,

de dérivée égale à −
1

6
.

Enfin, elle est localement au-dessus de sa tangente en 0, car f (x)−
(
1−
2x

3

)
∼
x→0

1

72
x2.

4. Soit g(x) = e
1
x

√
x2 + 1. Déterminer l’équation de l’asymptote à la courbe de g en +∞ et donner la

position relative de la courbe de g par rapport à cette asymptote au voisinage de +∞.

Correction

Cette fonction est gentille, on peut directement faire un développement asymptotique. On écrit
que

g(x) = e
1
x x

√
1 +

1

x2

=
x→+∞

x

(
1 +
1

x
+
1

2x2
+ o

(
1

x2

))(
1 +

1

2x2
+ o

(
1

x2

))
=

x→+∞
x

(
1 +
1

x
+
1

x2

)
=

x→+∞
x + 1 +

1

x
+ o

(
1

x

)
,

donc la courbe de g a pour asymptote en +∞ la droite d’équation y = x + 1 , et, comme g(x)−

(x + 1) ∼
x→+∞

1

x
> 0, on en déduit que la courbe de g est au-dessus de sa tangente en +∞.
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Problème : Autour de la méthode de Newton
Le but de ce problème est d’étudier une méthode d’analyse numérique utilisée pour déterminer le zéro d’une
fonction : la méthode de Newton. Dans la partie A, nous établissons deux résultats utiles pour la partie B,
dans laquelle nous étudions la méthode de Newton pour des fonctions et des polynômes. Dans la partie C,
nous en voyons une adaptation pour les matrices. Les parties B et C sont largement indépendantes.

A. Deux résultats d’analyse

A-I. Critère de D’Alembert

1. Soit (an)n∈N une suite de réels strictement positifs. On suppose que
an+1
an

−→
n→+∞

` ∈ [0, 1[. Démontrer

que pour tout α dans ]`, 1[, il existe C > 0 tel que an 6 Cαn à partir d’un certain rang. En déduire que
pour tout β dans ]`, 1[, an =

n→+∞
o(βn).

Correction

Soit α ∈]`, 1[. Comme
an+1
an

−→
n→+∞

` < α, on en déduit que l’on dispose de n0 ∈ N tel que pour

tout n > n0, on ait
an+1
an

< α.

On en déduit, par positivité de (an)n∈N, que pour tout n > n0, an+1 6 αan, d’où, par récurrence
immédiate,

an 6 α
n−n0an0 = Cα

n, en posant C =
an0
αn0

.

Si β ∈]`, 1[, on prend α ∈]`, β[. Alors on dispose de C > 0 tel que, à partir d’un certain rang,

an 6 Cα
n, d’où 0 6

an
βn
6 C

(
α

β

)n
−→
n→+∞

0, ce qui signifie exactement que an =
n→+∞

o(βn) .

A-II. Égalité de Taylor-Lagrange

Soit n ∈ N et f une fonction de classe C n+1 sur un intervalle I. Soient a < b deux réels de I. Soit A le réel
défini par la relation

(b − a)n+1

(n + 1)!
A = f (b)− f (a)−

n∑
k=1

(b − a)k

k!
f (k)(a).

Soit ϕ la fonction définie par, pour tout x dans I,

ϕ(x) = f (b)− f (x)−
n∑
k=1

(b − x)k

k!
f (k)(x)−

(b − x)n+1

(n + 1)!
A.

2. Calculer ϕ(a), ϕ(b) et en déduire qu’il existe c dans ]a, b[ tel que

f (b) =

n∑
k=0

f (k)(a)

k!
(b − a)k +

f (n+1)(c)

(n + 1)!
(b − a)n+1.

Correction

On calcule

ϕ(a) = f (b)− f (a)−
n∑
k=1

(b − a)k

k!
f (k)(x)−

(b − a)n+1

(n + 1)!
A =

(b − a)n+1

(n + 1)!
A−

(b − a)n+1

(n + 1)!
A = 0,
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et

ϕ(b) = f (b)− f (b)−
n∑
k=1

(b − b)k

k!
f (k)(b)−

(b − b)n+1

(n + 1)!
A = 0.

Ainsi, ϕ(a) = ϕ(b). La fonction ϕ étant continue sur [a, b], dérivable sur ]a, b[, on en déduit, par
le théorème de Rolle, qu’il existe c dans ]a, b[ tel que ϕ′(c) = 0.
Mais, pour tout x dans ]a, b[,

ϕ′(x) = −f ′(x) +
n∑
k=1

k
(b − x)k−1

k!
f (k)(x)−

n∑
k=1

(b − x)k

k!
f (k+1)(x) +

(n + 1)(b − x)n

(n + 1)!
A

=

n∑
k=1

(b − x)k−1

(k − 1)! f
(k)(x)−

n∑
k=0

(b − x)k

k!
f (k+1)(x) +

(b − x)n

n!
A

= −
(b − x)n+1

(n + 1)!
f (n+1)(x) +

(b − x)n

n!
A.

Ainsi, comme ϕ′(c) = 0, on en déduit que

(b − x)n+1

(n + 1)!
f (n+1)(c) =

(b − x)n

n!
A,

c’est-à-dire que

f (b)− f (a)−
n∑
k=1

(b − a)k

k!
f (k)(a) =

(b − x)n+1

(n + 1)!
f (n+1)(c),

donc que

f (b) =

n∑
k=0

f (k)(a)

k!
(b − a)k +

f (n+1)(c)

(n + 1)!
(b − a)n+1.

3. En déduire notamment que si f est de classe C 2, il existe c ∈]a, b[ tel que

f (b) = f (a) + f ′(a)(b − a) +
f ′′(c)

2
(b − a)2.

Correction

On applique juste la formule pour n = 1 !

B. Méthode de Newton pour les fonctions

B-I. Premières propriétés

Soit f une fonction réelle, dérivable sur un intervalle I, s’annulant en un point a. On définit une suite (xn)n∈N
par x0 ∈ I et, pour tout n dans N, xn+1 est le point d’intersection de la tangente à la courbe de f au point
d’abscisse xn et de l’axe des abscisses.

4. Démontrer que la suite (xk)k∈N définie par le procédé ci-dessus vérifie la relation de récurrence

∀k ∈ N, xk+1 = xk −
f (xk)

f ′(xk)
, et illustrer la méthode !
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Correction

Soit k dans N. L’équation de la tangente à la courbe de f en xk est

y = f (xk) + f
′(xk)(x − xk).

Ainsi, le point xk+1 satisfait la relation

0 = f (xk) + f
′(xk)(xk+1 − xk),

d’où

xk+1 = xk −
f (xk)

f ′(xk)
.

On a ainsi

ff

5. À titre d’exemple, donner l’expression du terme général de la suite (xk)k∈N quand f : x 7→ x2. Vérifier
qu’une telle suite converge bien vers 0, quel que soit le réel x0.

Correction

Soit x0 ∈ R. La relation de récurrence de la suite (xk)k∈N s’écrit alors

xk+1 = xk −
x2k
2xk
=
xk
2
.

Ainsi, (xk)k∈N est géométrique de raison
1

2
, donc converge vers 0.

6. Démontrer que si a ∈ R et f : x 7→
1

x
− a, alors pour tout k dans N, xk+1 = xk(2− axk).
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Correction

Il s’agit juste d’un calcul. On écrit

xk+1 = xk −
1
xk
− a
− 1
x2k

= xk + x
2
k

(
1

xk
− a
)
= 2xk − ax2k = xk(2− axk).

7. Démontrer que si f : x 7→ x3− 2x +2 et x0 = 0, alors la méthode de Newton ne converge pas. On fera
un dessin illustrant la situation.

Correction

Remarquons que x1 = 0−
2

−2 = 1 et que

x2 = 1−
1− 2 + 2
3− 2 = 0.

Ainsi, par récurrence immédiate, pour tout n dans N, x2n = 0 et x2n+1 = 1. Ainsi, (xk)k∈N ne
converge pas. On le remarque en traçant le graphe de la fonction

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

3

4

5

6

B-II. Convergence de la méthode de Newton

On suppose ici que I = [a, b] où (a, b) sont deux réels tels que a < b. On suppose ici que f est une fonction
de classe C 2 sur [a, b], vérifiant

• f (a) < 0,

• f (b) > 0,

• ∀x ∈ [a, b], f ′(x) > 0,
• ∀x ∈ [a, b], f ′′(x) > 0.

8. Montrer que l’équation f (x) = 0 admet une unique solution dans ]a, b[, que l’on notera c .

Correction

f est continue sur [a, b], f (a) < 0, f (b) > 0, et f est strictement croissante sur [a, b] car sa
dérivée y est strictement négative. Donc, d’après le théorème de la bijection (ou le théorème des
valeurs intermédiaires appliqué aux fonctions strictement monotones), l’équation f (x) = 0 admet
exactement une solution dans ]a, b[.

On définit maintenant, pour tout x de [a, b], g(x) = x −
f (x)

f ′(x)
.
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9. Démontrer que pour tout x dans [a, b], il existe αx compris entre x et c tel que

g(x)− c =
1

2

f ′′(αx)

f ′(x)
(x − c)2.

Correction

Soit x dans [a, b]. Par l’égalité de Taylor-Lagrange entre x et c , on dispose de αx entre x et c tel
que

0 = f (c) = f (x) + (x − c)f ′(x) +
f ′′(αx)

2
(x − c)2.

Ainsi,

g(x)− c = x −
f (x)

f ′(x)
− c =

−(c − x)f ′(x)− f (x)
f ′(x)

=
f ′′(αx)

2f ′(x)
(x − c)2.

On définit alors, comme en première partie, la suite (xn)n∈N par{
x0 ∈ [a, b]
∀n ∈ N, xn+1 = g(xn).

10. Montrer que g est C 1 sur [a, b], et déterminer les variations de g.

Correction

On suppose que f ′ ne s’annule pas sur [a, b] donc g est bien définie et C 1 par les théorèmes
généraux. Sa dérivée est alors, pour tout x de [a, b],

g′(x) = 1−
f ′(x)2 − f (x)f ′′(x)

f ′(x)2
=
f (x)f ′′(x)

f (x)2
.

Or, ∀x ∈ [a, b],
f ′′(x)

f (x)2
> 0, et f change de signe une fois en c . On en déduit que g est décroissante

sur [a, c ] et croissante sur [c, b].

11. Montrer que si x0 > c , alors (xn) est monotone et converge vers c . On a ainsi démontré une convergence
globale de la méthode de Newton.

Correction

Montrons que pour tout entier naturel n, xn > xn+1 > c . Initialisation. x0 = a > c , et x1 = g(x0),

donc, par l’étude des variations de g, x1 > c . De plus, comme x0 = a, x1 = x0 −
f (a)

f ′(a)
. Comme

f (a) < 0 et f ′(a) > 0, x1 < x0. D’où l’initialisation.
Hérédité.Soit n dans N tel que xn > xn+1 > c . Alors

xn+1 − xn = g(xn)− xn = −
f (xn)

f ′(xn)
.

Or f (xn) > 0 car xn > c et f ′(xn) < 0, donc xn+1 − xn 6 0. De plus, g est décroissante sur [a, c ],
croissante sur [c, b], de minimum atteint en c et égal à g(c) = c . Donc g(xn) > c , i.e. xn+1 > c .
Donc x0 > · · · > xn > xn+1 > c .
Décroissante et minorée, (xn) converge. Notons ` sa limite. Par continuité de g, ` vérifie g(`) = `,

i.e. `−
f (`)

f ′(`)
= `, i.e. f (`) = 0. Or f s’annule en un unique point, donc ` = c .
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12. Démontrer que, dans ce cas,

xn+1 − c ∼
n→+∞

1

2
(xn − c)2

f ′′(c)

f ′(c)
.

En déduire que pour tout β dans ]0, 1[, xn − c =
n→+∞

o(βn).

Correction

On sait que xn+1 − c = g(xn)− c . Par la question 9., on dispose de αn dans [xn, c] tel que

g(xn)− c =
1

2

f ′′(αn)

f ′(xn)
(c − xn)2.

Mais xn −→
n→+∞

c , donc, par encadrement, αn −→
n→+∞

c donc, par continuité de f ′ et f ′′, f ′(xn) −→
n→+∞

f ′(c) et f ′′(αn) −→
n→+∞

f ′′(c). D’où

xn+1 − c ∼
n→+∞

1

2

f ′′(c)

f ′(c)
(c − xn)2.

On en déduit en particulier que (xn − c)n∈N est une suite de réels strictement positifs vérifiant

xn+1 − c
xn − c

∼
n→+∞

1

2

f ′′(c)

f ′(c)
(c − xn) −→

n→+∞
0,

donc, par le critère de D’Alembert, pour tout β dans ]0, 1[, xn − c =
n→+∞

o(βn).

B-III. Le cas polynomial

Cette partie est plus technique et sur un chapitre plus récent. N’hésitez pas à aller voir du côté des matrices
si vous le préférez.
Dans cette partie, on considère la méthode de Newton appliquée à un polynôme P :

P (X) =

r∏
k=1

(X − λi)mi .

où λ1 < · · · < λr . On suppose deg(P ) > 3.

13. Démontrer que les racines de P ′ et celles de P ′′ sont toutes dans [λ1, λr ].

Correction

C’est du cours de jeudi, donc très récent, je sais !
On sait déjà que, pour tout i , λi est racine de P ′ de multiplicité mi − 1.
De plus, par applications successives du théorème de Rolle, on dispose de (µ1, . . . , µr−1) des réels
vérifiant λ1 < µ1 < λ2 < µ2 < · · · < µr−1 < λr et tels que pour tout i dans J1, r − 1K, on ait
P ′(µi) = 0.
On compte alors le nombre de racines de P ′ trouvées (avec multiplicité). Il y en a :

r∑
i=1

(mi − 1) + r − 1 =

(
r∑
i=1

mi

)
− 1 = deg(P )− 1 = deg(P ′),

donc P ′ est scindé sur R et toutes ses racines sont dans [λ1, . . . , λr ].
De même, P ′′ est scindé sur R et toutes ses racines sont dans [λ1, . . . , λr ].
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14. En déduire que P est strictement positive, strictement croissante et strictement convexe sur ]λr ,+∞[.

Correction

La stricte positivité de P est évidente. On sait que P ′ et P ′′ ne s’annule pas sur ]λr ,+∞[. Par
continuité de P ′ et P ′′ et par le théorème des valeurs intermédiaires, on en déduit que P ′ et P ′′

sont de signe constant sur ]λr ,+∞[.
Comme P ′(x) −→

x→+∞
+∞ et P ′′(x) −→

x→+∞
+∞ (car P est de degré au moins 3), on en déduit que

P ′ et P ′′ sont strictement positifs, ce qui assure que P est strictement convexe et strictement
croissant sur [λr ,+∞[.

On considère alors la suite (xn)n∈N définie par x0 > λr et, pour tout n dans N, xn+1 = g(xn), où g : x 7→

x −
P (x)

P ′(x)
.

15. Justifier que xn −→
n→+∞

λr .

Correction

On est alors exactement dans le cadre d’étude de la question 11, et on a donc xn −→
n→+∞

λr .

On va maintenant étudier plus finement la vitesse de convergence de (xn)n∈N.

16. Démontrer que pour tout x différent de λ1, . . . , λr , on a

P ′(x)

P (x)
=

r∑
i=1

mi
x − λi

.

Correction

On sait, par le cours, que

P ′(x) =

r∑
i=1

mi(x − λi)mi−1
∏
16j6n
j 6=i

(x − λj)mj ,

donc

P ′(x)

P (x)
=

r∑
i=1

mi(x − λi)mi−1
∏
16j6n
j 6=i
(x − λj)mj

P (x)

=

r∑
i=1

mi
x − λi

.

17. En déduire que, pour x > λr ,

g′(x) = 1−

(∑
i

mi
x − λi

)−2(∑
i

mi

(x − λi)2

)
−→
x→λr

1−
1

mr
.
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Correction

On calcule encore ! On sait que

g(x) = x −
1

P ′(x)
P (x)

= x −
1∑r

i=1
mi

x−λi
.

On en déduit donc que pour tout x > λr ,

g′(x) = 1 +
−
∑r

i=1
mi

(x−λi )2(∑r
i=1

mi

x−λi

)2
= 1−

∑r
i=1

mi

(x−λi )2(∑r
i=1

mi

x−λi

)2 .
Mais,

r∑
i=1

mi
(x − λi)2

∼
x→λr

mr
(x − λr )2

,

et
r∑
i=1

mi
x − λi

∼
x→λr

mr
x − λr

,

d’où ∑r
i=1

mi

(x−λi )2(∑r
i=1

mi

x−λi

)2 ∼x→λr
mr

(x−λr )2
m2r

(x−λr )2
−→
x→λr

1

mr
,

d’où g′(x) −→
x→λr

1−
1

mr
.

18. En déduire que
xn+1 − λr
xn − λr

−→
n→+∞

1−
1

mr
, puis que, pour tout β dans

]
1−

1

mr
, 1

[
,

xn − λr =
n→+∞

o(βn).

Correction

Soit n ∈ N. On sait que
xn+1 − λr = g(xn)− g(λr ),

donc, par le théorème des accroissements finis, on dispose de yn ∈]λr , xn[ tel que

xn+1 − λr = g′(yn)(xn − λr ) ∼
n→+∞

(
1−

1

mr

)
(xn − λr ),

(étant donné que yn −→
n→+∞

λr ) d’où le résultat désiré. Ensuite, la règle de D’Alembert permet de

conclure.
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C. Méthode de Newton-Schulz pour calculer l’inverse d’une matrice
Le but de cette partie est de comprendre comment adapter la méthode de Newton, a priori une méthode
d’analyse, à des objets beaucoup plus algébriques, à savoir les matrices !

C-I. Une norme sur Mn,p(R)

Soient n et p deux entiers naturels non nuls. On pose, pour tout M dans Mn,p(R), ‖M‖n,p =
√
Tr(MTM)

(où MT désigne la transposée de M et Tr désigne la trace). Si n et p sont fixés et qu’il n’y a pas d’ambiguïté,
on la note simplement ‖M‖.

On veut démontrer que l’application M 7→ ‖M‖ est une norme sur Mn,p(R), c’est-à-dire qu’elle vérifie les
hypothèses suivantes :

a. (positivité) ∀M ∈Mn,p(R), ‖M‖ > 0,
b. (homogénéité) ∀M ∈Mn,p(R), ∀λ ∈ R, ‖λM‖ = |λ|. ‖M‖,
c. (séparation) ∀M ∈Mn,p(R), ‖M‖ = 0⇔ M = 0n,

d. (inégalité triangulaire) ∀(M,N) ∈Mn,p(R)2, ‖M + N‖ 6 ‖M‖+ ‖N‖.

19. Démontrer que les propriétés a., b. et c. sont vraies.

Correction

On remarque que ‖M‖2 =
n∑
i=1

p∑
j=1

m2i j .

Soit M = (mi j)16i6n
16j6p

∈Mn,p(R). Alors

a. ‖M‖ =

√√√√ n∑
i=1

p∑
j=1

m2i j > 0.

b. Soit λ ∈ R. Alors

‖λM‖ =

√√√√ n∑
i=1

p∑
j=1

(λmi j)2 =

√√√√λ2 n∑
i=1

p∑
j=1

m2i j = |λ|.

√√√√ n∑
i=1

p∑
j=1

m2i j = |λ|. ‖M‖

c. Supposons que M = 0. Alors

√√√√ n∑
i=1

p∑
j=1

m2i j = 0.

Réciproquement, si ‖M‖ = 0, alors
n∑
i=1

p∑
j=1

m2i j = 0. Or, pour tout (i , j), m
2
i j > 0, et, une

somme de termes positifs étant nulle ssi chaque terme est nul, on en déduit que ∀(i , j) ∈
J1, nK× J1, pK, mi j = 0.

On a donc démontré les propriétés a., b. et c.

Pour démontrer l’inégalité triangulaire (propriété d.), on va démontrer l’inégalité de Cauchy-Schwarz :

∀(U, V ) ∈Mn,p(R)2, Tr(UT V ) 6 ‖U‖ ‖V ‖ .

On considère la fonction P : x 7→ ‖U + xV ‖2.
20. Exprimer P comme un polynôme de degré 2 en x .
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Correction

Soit x dans R. Alors

P (x) = ‖U + xV ‖2

= Tr((U + xV )T (U + xV ))

= Tr(UTU + xUT V + xV TU + x2V T V ) par linéarité de la transposition

= Tr(UTU) + xTr(UT V ) + xTr(V TU) + x2Tr(V T V ) par linéarité de la trace

= ‖U‖2 + 2xTr(UT V ) + x2 ‖V ‖2 ,

la dernière égalité venant du fait que Tr(V TU) = Tr((V TU)T ) = Tr(UT V ) (la trace d’une matrice
égale la trace de sa transposée.
On a ainsi exprimé P comme un polynôme de degré 2 en x , en supposant V non nul (sinon, de
toute manière, l’inégalité est triviale).

21. En étudiant le signe de P , en déduire l’inégalité de Cauchy-Schwarz.

Correction

Comme P (x) = ‖U + xV ‖2, P est positif sur R. Ainsi son discriminant est négatif ou nul. On en
déduit que

4Tr(UT V )2 − 4 ‖U‖2 ‖V ‖2 6 0,

i.e. que Tr(UT V )2 6 ‖U‖2 ‖V ‖2, soit |Tr(UT V )| 6 ‖U‖ ‖V ‖. Donc, a fortiori,

Tr(UT V ) 6 ‖U‖ ‖V ‖ .

22. En déduire l’inégalité triangulaire.

Correction

Soient alors A et B dans Mn,p(R). Calculons

‖A+ B‖2 = Tr((A+ B)T (A+ B)) = ‖A‖2 + 2Tr(ATB) + ‖B‖2 ,

par le même raisonnement qu’à la question précédente. Mais, par l’inégalité de Cauchy-Schwarz,
Tr(ATB) 6 ‖A‖ ‖B‖, d’où

‖A+ B‖2 6 ‖A‖2 + 2 ‖A‖ ‖B‖+ ‖B‖2 = (‖A‖+ ‖B‖)2,

d’où ‖A+ B‖ 6 ‖A‖+ ‖B‖ étant donné que toutes les quantités sont positives.

23. Soient A, B dans Mn(R)2. Démontrer que si (A1, . . . , An) sont les colonnes de A et (B1, . . . , Bn) sont

celles de B, alors ‖AB‖2n,n =
n∑
i=1

n∑
j=1

Tr(ATi Bj)
2.

Correction

On calcule :

AT =

 AT1
AT2
... ATn

 et B =
(
B1 B2 · · · Bn

)
.

Page 13 sur 18



MPSI1 Pasteur 2025-2026 DS06

Donc, par produit par blocs, le terme (i , j) de AB est ATi × Bj (qui est bien dans M1,1(R), donc
dans R. Ainsi, par définition de ‖·‖,

‖AB‖ =
n∑
i=1

n∑
j=1

(ATi × Bj)2 =
n∑
i=1

n∑
j=1

Tr(ATi × Bj)2,

car la trace d’une matrice de M1,1(R) est l’unique valeur de cette matrice.

24. En déduire que lorsque l’on considère des matrices carrées, la norme ‖·‖ est une norme d’algèbre,
c’est-à-dire que

∀(A,B) ∈Mn(R)2, ‖AB‖ 6 ‖A‖ ‖B‖ .

Correction

Soit (A,B) ∈Mn(R)2. On reprend les notations de la question précédente.
Par l’inégalité de Cauchy-Schwarz appliquée à la norme ‖·‖n,1,

Tr(ATi Bj) 6 ‖Ai‖
2
n,1 ‖Bj‖

2
n,1 .

Ainsi,

‖AB‖ 6
n∑
i=1

n∑
j=1

‖Ai‖2n,1 ‖Bj‖
2
n,1 =

(
n∑
i=1

‖Ai‖2n,1

) n∑
j=1

‖Bj‖2n,1

 = ( n∑
i=1

n∑
k=1

a2ki

) n∑
j=1

n∑
k=1

b2kj

 = ‖A‖2 ‖B‖2 ,
d’où l’inégalité désirée !

25. Démontrer, en cherchant un exemple pour n = 2, que l’on a en général pas d’égalité entre ‖AB‖ et
‖A‖ ‖B‖.

Correction

Si l’on considère A =
(
1 1

0 0

)
et B =

(
1 0

−1 0

)
, alors AB = 0 mais ‖A‖ ‖B‖ = 2.

C-II. Convergence d’une suite de matrices

Nous sommes désormais armés pour parler de la convergence d’une suite de matrices. On dit qu’une suite
de matrices (Xk)k∈N ∈Mn(R)N converge vers une matrice A si elle converge « coefficient par coefficient »,
c’est-à-dire que

∀(i , j) ∈ J1, nK2, [Xk ]i j −→
k→+∞

[A]i j .

On s’autorise alors la notation
Xk −→

k→+∞
A.

26. Un exemple. Démontrer que si M =
(
1 1

0 1/2

)
, alors la suite (Mk)k∈N converge vers une matrice

dont on précisera les coefficients.
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Correction

Déjà, comme M est triangulaire supérieure, toutes ses puissances sont triangulaires supérieures.

De plus, on sait que les coefficients de la diagonale de Mk seront 1k et
1

2k
. On sait donc que pour

tout k dans N, il existe ak tel que

Mk =

(
1 ak
0 1/2k

)
Mais alors, si k ∈ N,

Mk+1 = M ×Mk =

(
1 1

0 1/2

)
×
(
1 ak
0 1/2k

)
=

1 ak +
1

2k

0
1

2k+1


Ainsi, ak+1 = ak +

1

2k
donc, comme a0 = 0, par récurrence immédiate, on en déduit que

∀k ∈ N, ak =
k−1∑
i=0

1

2i
=
1− 1

2k

1− 12
= 2.

(
1−

1

2k

)
−→
k→+∞

2

Donc (Mk) converge et sa limite égale
(
1 2

0 1/2

)
.

27. Démontrer que (Xk)k∈N ∈Mn(R)N converge vers A si, et seulement si ‖Xk − A‖ −→
k→+∞

0.

Correction

Raisonnons par double implication.

⇒ Supposons que (Xk)k∈N ∈Mn(R)N converge vers A. Alors

‖Xk − A‖2 =
n∑
i=1

n∑
j=1

[Xk − A]2i j .

Or, ∀(i , j) ∈ J1, nK2, [Xk −A]2i j = ([Xk ]i j − [A]i j)2 −→
k→+∞

0. Donc par somme (finie, indépen-

dante de k) sur les limites, ‖Xk − A‖2 −→
k→+∞

0.

⇐ Supposons que ‖Xk − A‖ −→
k→+∞

0. Soit (i , j) ∈ J1, nK2. Alors

([Xk ]i j − [A]i j)2 = [Xk − A]2i j 6
n∑
s=1

n∑
t=1

[Xk − A]2st = ‖Xk − A‖
2 −→
k→+∞

0,

donc, par encadrement, ([Xk ]i j − [A]i j)2 −→
k→+∞

0, ce qui signifie que [Xk ]i j −→
k→+∞

[A]i j , i.e.

(Xk)k∈N converge vers A.

On admet les propositions suivantes : si (Xk)k∈N et (Yk)k∈N sont deux suites de matrices n × n convergeant
respectivement vers A et B, alors

Xk + Yk −→
k→+∞

A+ B et XkYk −→
k→+∞

A× B.
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C-III. Une suite de matrices

Soit A ∈ Mn(R) une matrice inversible. On se demande si la relation trouvée à la question 6. peut nous
permettre de calculer l’inverse de A. On pose alors

X0 ∈Mn(R) et ∀k ∈ N, Xk+1 = Xk × (2In − AXk).

Notre but est de démontrer que, sous certaines conditions, la suite (Xk)k∈N converge vers A−1.
On pose (Wk)k∈N la suite des erreurs, i.e.

∀k ∈ N, Wk = In −XkA.

Plus Wk est petit, plus XkA est proche de In, donc plus Xk est proche de A−1.

28. Démontrer que (Wk)k∈N vérifie la relation de récurrence : ∀k ∈ N, Wk+1 = W 2k . En déduire une
expression de Wk pour tout k dans N.

Correction

Soit k ∈ N. Alors

Wk+1 = In −Xk+1A = In − 2XkA+XkAXkA = (In −XkA)2 = W 2k ,

On en déduit par récurrence immédiate que pour tout k dans N,

Wk = W
2n

0 .

29. En déduire que la méthode de Newton pour les matrices converge localement, c’est-à-dire qu’il existe
ε > 0 tel que pour tout X0 tel que ‖In −X0A‖ 6 ε, alors la suite (Xk)k∈N converge vers A−1.

Correction

On en déduit que pour tout k dans N,

‖Wk‖ 6 ‖W0‖2
k

(car la norme ‖·‖ est une norme d’algèbre). Ainsi, si ‖W0‖ < 1, alors on en déduit que ‖W0‖2
k

−→
k→+∞

0, i.e. AXk −→
k→+∞

In, i.e.

Xk = XkA× A−1 −→
k→+∞

A−1.

D’où le résultat !

C-IV. Un cas de convergence

Dans cette dernière section, on suppose que A est une matrice à diagonale strictement dominante, c’est-à-dire
que

∀i ∈ J1, nK, |ai i | >
∑
16j6n
j 6=i

|ai j |.

30. Démontrer que A est inversible. On pourra utiliser qu’une matrice est inversible si et seulement si
∀X ∈Mn,1(R), AX = 0⇒ X = 0.
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Correction

Soit X =

x1...
xn

 tel que AX = 0n,1.

Soit i0 tel que |xi0 | = max{|xi |, 1 6 i 6 n}. Alors en écrivant la ligne i0 de la relation AX = 0, on

obtient
n∑
j=1

ai0,jxj = 0, donc ai0,i0xi0 = −
∑
16j6n
j 6=i0

ai0,jxj , donc

|ai0,i0 ||xi0 | 6
∑
16j6n
j 6=i0

|ai0,j ||xj | 6
∑
16j6n
j neqi0

|ai0,j ||xi0 |,

ce qui est impossible si |xi0 | 6= 0. Donc |xi0 | = 0, donc X = 0 donc A est inversible.

31. On suppose A à diagonale fortement dominante, c’est-à-dire que

∀i ∈ J1, nK, |ai i | > n
∑
16j6n
j 6=i

|ai j |.

Démontrer qu’en prenant

X0 =



1

a11
(0)

1

a22
. . .

(0)
1

ann


,

alors la suite (Xk)k∈N définie comme précédemment converge vers A−1.

Correction

Évaluons la norme de In − AX0 : Déjà,

AX0 =



a11
a11

a12
a11

a13
a11

· · ·
a1n
a11a21

a22

a22
a22

a23
a22

· · ·
a2n
a22

...
. . .

...
...

. . .
an1
ann

an2
ann

· · · · · ·
ann
ann


donc

In − AX0 =



0 −
a12
a11

−
a13
a11

· · · −
a1n
a11

−
a21
a22

0 −
a23
a22

· · · −
a2n
a22

...
. . .

...
...

. . .

−
an1
ann

−
an2
ann

· · · · · · 0


On en déduit que

‖In − AX0‖2 =
n∑
i=1

∑
16j6n
j 6=i

a2i j
a2i i
.
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Mais, par caractère fortement dominant, on en déduit que pour tous i et j dans J1, nK, |ai j | 6 |ai i |.

Ainsi,
|ai j |
|ai i |
6 1, donc

a2i j
a2i i
6
|ai j |
|ai i |

. On en conclut que

‖In − AX0‖2 6
n∑
i=1

∑
16j6n
j 6=i

|ai j |
|ai i |

.

Mais, par caractère fortement dominant, ∑
16j6n
j 6=i

|ai j |
|ai i |

<
1

n
,

ce qui assure que

‖In − AX0‖2 <
n∑
i=1

1

n
< 1.

Ainsi, ‖W0‖ < 1, d’où la convergence de (Wk)k∈N vers 0, et ainsi la convergence de (Xk)k∈N vers
A−1.

Épilogue. En fait, on a convergence même dans le cas strictement dominant, mais c’est une autre histoire,
que l’on ne peut pas résoudre pour le moment... !
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