MPSI1 Pasteur 2025-2026 DS06

MPSI 1

Mathématiques
DS 06

Samedi 7 février — 8h-12h

Durée : 4 heures.

— Prenez 10 minutes pour lire le sujet en entier et décider de la stratégie que vous adopterez.
— Prenez 10 minutes au moins a la fin des 4 heures pour vous relire !

e Toute calculatrice ou appareil électronique est interdit.

Le sujet est composé d’un exercice et d'un probléme.

e Consignes de présentations.

— Les pages doivent étre numérotées.

— Les résultats doivent étre mis en valeur (encadrés ou soulignés).

— Les questions doivent étre numérotées. Une question non numérotée, c'est une question poten-
tiellement non corrigée.

— Les questions doivent étre faites dans I'ordre : si vous admettez une question, laissez de la place
a I'endroit ou elle est censée étre pour y revenir ensuite. Changez de copie ou de page quand vous
changez de grande partie.

e A tout moment, vous pouvez admettre le résultat d'une question pour pouvoir continuer : il suffit de le
préciser clairement sur la copie.

e Si vous voyez ce qui semble &tre une erreur d'énoncé, indiquez-le sur la copie.
e |aissez de la place dans une marge a gauche pour pouvoir noter plus facilement le devoir.

e Une réponse fausse, si elle ne laisse pas paraitre de calculs intermédiaires, compte 0 points; avec calculs
intermédiaires elle peut rapporter quelques points.

&1 Bon courage! &3
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Exercice 1. De 'asymptotique, comme promis !.

1
1. Déterminer le développement limité a I'ordre 4 en 0 de 12 In(cos(x)).

Correction

On calcule :
x2 x4
T In(cos(x)) = (1+ x>+ o(x?)) In (1 = o o(x“))
x2  x* x4
— 1 2 2 _ s 4
Xﬁo(—i—x —|—o(x))( 2+24 8—|—o(x)
2 4
_ 2 oy (X X 4
S e rele) ( 7 12O )>
K2 ¥t 4 .
SoTz 122 o)
X2 !
x—0 2 12
B} : B i sin(x)
2. Déterminer le développement limité a I'ordre 3 en 7 de Y

Correction

On écrit x = m+ h. Alors
sin(x) _ sin(m + h)

X w4+ h
_ 1 —=sin(h)
w144
1 I . h o W )
h:07r<_h+6+o(h) (1—7r+7r2+0(h)>
1 h2 h3 13 3
h—>0<h+ﬂ'2+6)+o(h)

On en déduit que

(x—m)+ %(x - )%+ (1 — 1) (x =)+ o((x — m)3).

sin(x) 1
6w 3

X X:>7|' e

. 1
sin(x)\ * . o
3. Montrer que f : x — ()E)) définie sur ]0, [ se prolonge par continuité en 0.

Etudier la dérivabilité en 0. Dans le cas ol la fonction est dérivable, déterminer la position relative de
la courbe et de sa tangente.
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Correction

Il s'agit de déterminer un développement limité a I'ordre 2 de f en 0. On écrit déja que

)
=, P (x In (1 — % + o(x3))> .

Or,

On en déduit que

d'ou

x 1x? 5
f(X)Xzol—g—‘rE%—‘rO(X ),

donc f est prolongeable par continuité en O, ‘en posant (0) = 1‘. Elle est dérivable en 0,

1
de dérivée égale a ~5!

. 2x 1
Enfin, elle est localement au-dessus de sa tangente en 0, car f(x) — <1 — > ~ =X
3 ) x=072

4. Soit g(x) = ex/x2 + 1. Déterminer I'équation de I'asymptote a la courbe de g en +oo et donner la
position relative de la courbe de g par rapport a cette asymptote au voisinage de +oo.

Correction

Cette fonction est gentille, on peut directement faire un développement asymptotique. On écrit

que
1
g(x):eixwl—kp
= 1442 yo(= 14— +o(=
ity x 22 "o\ 2 e
1 1
= X 1+*+72
X——+00 X X
()
= x+l+-+o0|—-],
x—>+00 X X

donc la courbe de g a pour asymptote en +oo ‘ la droite d'équation y = x + 1|, et, comme g(x) —

1 .
(x+1) ~ —=>0,on en déduit que la courbe de g est ‘ au-dessus de sa tangente en +oo0. ‘
xX—+o00 X
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Probleme : Autour de la méthode de Newton

Le but de ce probléme est d’'étudier une méthode d'analyse numérique utilisée pour déterminer le zéro d'une
fonction : la méthode de Newton. Dans la partie A, nous établissons deux résultats utiles pour la partie B,
dans laquelle nous étudions la méthode de Newton pour des fonctions et des polynémes. Dans la partie C,
nous en voyons une adaptation pour les matrices. Les parties B et C sont largement indépendantes.

A. Deux résultats d’analyse

A-l. Critére de D’Alembert

a
il g€ [0,1]. Démontrer
dp n—+oo

que pour tout a dans £, 1], il existe C > 0 tel que a, < Ca" a partir d'un certain rang. En déduire que
pour tout B dans ]¢,1[, a, = o(B").
n—-+00

4‘ Correction

Soit a €]¢,1[. Comme

1. Soit (a,)nen une suite de réels strictement positifs. On suppose que

a , , ,
Mo, g < a, on en déduit que I'on dispose de ny € N tel que pour
an n—+oo

dn+1

tout n > ng, on ait — < «
dn
On en déduit, par positivité de (a,)nen, que pour tout n = ng, anr1 < aa,, d'ol, par récurrence
immédiate,
_ a
ap <" ™a, = Ca”, en posant C = ';‘Z)
a

Si B €]¢,1], on prend a €]¢,8][. Alors on dispose de C > 0 tel que, a partir d'un certain rang,
< Ca”, don0< (

) — 0, ce qui signifie exactement que [a, = o(8")|
n—-+o0 n——+oo

R -

A-1l. Egalité de Taylor-Lagrange

Soit n € N et f une fonction de classe €1 sur un intervalle I. Soient a < b deux réels de 1. Soit A le réel
défini par la relation

_ n+1
ot A= D) 0 - Z(b H9(s).

Soit ¢ la fonction définie par, pour tout x dans I,

(b _ X)n+1

o) = 110) 1000 = > L 00 - -0

k=1

2. Calculer ¢(a), @(b) et en déduire qu'il existe ¢ dans |a, b[ tel que

F(n+1)
f(b):§f (a)(b_ )+ (n+1()cg)(b_a)"+l'

On calcule

W — 3)k 7(b—a)”+1 7 (b—a)”+1 (b—a)”“

(b—a)
‘p(a):f(b)*f(a)’; ARG G A ) IR R )T

A=0,

Page 4 sur



MPSI1 Pasteur 2025-2026 DS06

et
. n+1
o(b) = F(b) — F(B) - 3 (0 iy p) - ([er_b)l)!A o

k=1
Ainsi, w(a) = @(b). La fonction ¢ étant continue sur [a, b], dérivable sur ]a, b[, on en déduit, par
le théoréeme de Rolle, qu'il existe ‘ ¢ dans ]a, b[ tel que ¢'(c) = 0. ‘
Mais, pour tout x dans ]a, bJ,

n o \k—1 —x)"
w'(x):ff’(x)+zk7(b ol Z(b e 4 (DO X
= Z( 1)! (k)( ) — Z (b (kH)(X) & nX)nA
- (b—x) o 4+ - X)"A_

(n+1)! n!
Ainsi, comme ¢’(c) = 0, on en déduit que

B x) oo = L0y,

c'est-a-dire que

f(b) _ f(a) Z (b f(k)( ) _ (b - X)n+1 f(n+1)(C),

— NCE
donc que
n (k) (n+1)
f(b)y=>_ J kl(a)(b —a)f + 7f(n - 1(;)(13 —a)"t,
k=0 ‘ ‘

3. En déduire notamment que si f est de classe €2, il existe c €]a, b[ tel que

f(b) = f(a)+ f'(a)(b—a)+ fﬁéc) (b— a)?.

4‘ Correction

On applique juste la formule pour n =11

B. Meéthode de Newton pour les fonctions

B-1. Premiéres propriétés
Soit f une fonction réelle, dérivable sur un intervalle I, s'annulant en un point a. On définit une suite (X,)nen

par xg € I et, pour tout n dans N, x,;1 est le point d’intersection de la tangente a la courbe de f au point
d'abscisse x, et de |'axe des abscisses.

4. Démontrer que la suite (xx)ken définie par le procédé ci-dessus vérifie la relation de récurrence

f (%)
Vk € N, Xk4+1 = Xk — f’(Xk)'

et illustrer la méthode !
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Correction

Soit k dans N. L'équation de la tangente a la courbe de f en x, est
y =) + () (x = xk).
Ainsi, le point x,y1 satisfait la relation

0= (k) + (X)) (X1 — Xk),

f(xk)

Xk41 = Xk — ()

On a ainsi

5. A titre d’exemple, donner I'expression du terme général de la suite (xx)xken quand f : x — x2. Vérifier
qu'une telle suite converge bien vers 0, quel que soit le réel xg.

-
Correction
Soit xp € R. La relation de récurrence de la suite (xx)ken S'écrit alors
2
Xk 1=Xk—7xk :ﬁ
* 2 2

1
—, donc converge vers 0.

Ainsi, (xx)ken est géométrique de raison 5

) 1
6. Démontrer quesiac Ret f: x+— M a, alors pour tout k dans N, xx+1 = xx(2 — axk).
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Correction

Il s'agit juste d'un calcul. On écrit

L3

1
Xip1 = Xk — =— =X¢<+X,3<X—a =2 — axg = xk(2 — axk).
K

—
X

7. Démontrer que si f : x — x> —2x+2 et xo = 0, alors la méthode de Newton ne converge pas. On fera
un dessin illustrant la situation.

Correction

2
Remarquons que x; =0 — = 1 et que

1-242

XQZ]_— 3_7 =0.

Ainsi, par récurrence immédiate, pour tout n dans N, x2, = 0 et xop41 = 1. Ainsi, (Xk)ken Ne
converge pas. On le remarque en tracant le graphe de la fonction

B-l1l. Convergence de la méthode de Newton

On suppose ici que I = [a, b] ol (a, b) sont deux réels tels que a < b. On suppose ici que f est une fonction
de classe €? sur [a, b], vérifiant

e f(a) <0, e Vx € [a,b], f'(x)>0,
e f(b) >0, e Vx € [a, b], f'(x)>0.

8. Montrer que I'équation f(x) = 0 admet une unique solution dans ]a, b[, que I'on notera c.

Correction

f est continue sur [a, b], f(a) < 0, f(b) > 0, et f est strictement croissante sur [a, b] car sa
dérivée y est strictement négative. Donc, d'aprés le théoréme de la bijection (ou le théoréme des
valeurs intermédiaires appliqué aux fonctions strictement monotones), I'équation f(x) = 0 admet
exactement une solution dans ]a, b].

f(x)
()

On définit maintenant, pour tout x de [a, b], g(x) = x
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9. Démontrer que pour tout x dans [a, b], il existe a, compris entre x et ¢ tel que

-
Correction
Soit x dans [a, b]. Par I'égalité de Taylor-Lagrange entre x et ¢, on dispose de a, entre x et c tel
que
f// X
0="1(c)="Ff(x)+ (x—o)f'(x)+ %(X )
A (x) (c=x)f"(x) —f(x) _ (o)
f(x —(c—=x)f'(x) = f(x f(a 5
gx)—e=x-gFry e 1(x) - 2f/(xx) (x=c)”

On définit alors, comme en premiére partie, la suite (X,)nen par

Xo € [a, b]
VneN, Xpr1 = g(xn).
10. Montrer que g est &' sur [a, b], et déterminer les variations de g.

Correction

On suppose que f' ne s'annule pas sur [a, b] donc g est bien définie et €* par les théorémes
généraux. Sa dérivée est alors, pour tout x de [a, b],

oy g 02 = FO)F"(x) _ FOOF"(x)
gx)=1- F/(x)2 - f(x)2

"(x)
f(x)?
sur [a, c] et croissante sur [c, b].

Or, Vx € [a, b],

> 0, et f change de signe une fois en ¢c. On en déduit que g est décroissante

11. Montrer que si xg = ¢, alors (x,) est monotone et converge vers c. On a ainsi démontré une convergence
globale de la méthode de Newton.

Correction

Montrons que pour tout entier naturel n, x, = x,41 > c. Initialisation. xg = a > ¢, et x; = g(xo),
f(a)
f'(a)

. Comme

donc, par I'étude des variations de g, x; > c. De plus, comme xp = a, x1 = Xp —
f(a) <0etf'(a) >0, x; < xp. D'ou l'initialisation.

Hérédité.Soit n dans N tel que x, > xp,+1 > c. Alors

f (%n)
Xn+1 — Xp = g(Xn) — Xn = — f,(Xn)-

Or f(x,) = 0 car x, > c et f'(x,) <0, donc xp11 — X, < 0. De plus, g est décroissante sur [a, c],
croissante sur [c, b], de minimum atteint en ¢ et égal a g(c) = c. Donc g(x,) > ¢, i.e. Xp41 = C.
Donc xp = -+ = Xp = Xpp1 = C.
Décroissante et minorée, (x,) converge. Notons £ sa limite. Par continuité de g, £ vérifie g(£) = ¢,
: f(£)
e £ —

f'(€)

={,i.e. f(£) = 0. Or f s'annule en un unique point, donc £ = c.
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12. Démontrer que, dans ce cas,

f"(c)

1 2
Xp =€y 50e=0) Flc)

En déduire que pour tout 8 dans ]0,1[, x,—c = o(B8").
n oo

Correction

—+

On sait que x,+1 — ¢ = g(x,) — c. Par la question on dispose de o, dans [x,, c] tel que

1f"(ap)

g(xp) —c= 5 F70) (c—xn)2.

Mais x, — ¢, donc, par encadrement, &, — c donc, par continuité de ' et ", f'(x,) —>
n—-+oo n—-+oo

n—-+oo
! 1 1! N
f'(c) et F"(ay) o "(c). D'ou

o0

lfﬁ(c)
n—+o0 2 f’(C)

(c — xn)?.

Xp+1 — C

On en déduit en particulier que (x, — C)nen €st une suite de réels strictement positifs vérifiant

Xpi1— C 1f"(c)
S o = — X)) — 0,
X, — C n—+oo 2 f’(C) (C Xn) n—+o0
donc, | par le critére de D'Alembert, pour tout 8 dans |0, 1], x, — ¢ = o(B").
n—-+o00

B-IIlI.

Le cas polynomial

Cette partie est plus technique et sur un chapitre plus récent. N'hésitez pas a aller voir du cété des matrices
si vous le préférez.
Dans cette partie, on considére la méthode de Newton appliquée a un polyndme P :

r

P(X) = [T(x =)™

k=1

ol A1 < -+ < Ar. On suppose deg(P) > 3.

13. Démontrer que les racines de P’ et celles de P” sont toutes dans [A1, A/].

Correction

C'est du cours de jeudi, donc trés récent, je sais!
On sait déja que, pour tout i, \; est racine de P’ de multiplicité m; — 1.

De plus, par applications successives du théoréme de Rolle, on dispose de (u1, ..., Wr_1) des réels
vérifiant A\; < g < Ao < o < -+ < -1 < A, et tels que pour tout i dans [1,r — 1], on ait
Pl(/J,,') =0.

On compte alors le nombre de racines de P’ trouvées (avec multiplicité). Il y en a :

zr:(m,- —D+r-1= (i m,-> —1=deg(P) — 1 =deg(P"),

donc P’ est scindé sur R et toutes ses racines sont dans [Aq, .. ., Ar].
De méme, P” est scindé sur R et toutes ses racines sont dans [Ag, . .., Arl.
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14. En déduire que P est strictement positive, strictement croissante et strictement convexe sur |\,, +ool.

Correction

La stricte positivité de P est évidente. On sait que P’ et P” ne s’annule pas sur |\, +oo|. Par

continuité de P’ et P” et par le théoréme des valeurs intermédiaires, on en déduit que P’ et P”

sont de signe constant sur |\, +-o0l.

Comme P'(x) — +4ooet P’(x) — +oo (car P est de degré au moins 3), on en déduit que
X—400 X—+00

P’ et P"” sont strictement positifs, ce qui assure que P est strictement convexe et strictement
croissant sur [A,, +ool.

On considére alors la suite (x,)nen définie par xg > A, et, pour tout n dans N, x,11 = g(x,), ol g : X —
P(x)
X — )
P'(x)
15. Justifier que x, — A,.
n—+oo

Correction

On est alors exactement dans le cadre d'étude de la question 11, et on a donc x, —+> Ar.
n—-+oo

On va maintenant étudier plus finement la vitesse de convergence de (x;)nen-

16. Démontrer que pour tout x différent de A\q,..., A, on a

P'(x) L om
P(x) Z X=X\

Correction

On sait, par le cours, que

Px)=> mix=x)"" I (x=x)™,
=1

17\_;&§n
donc
Plx) <& mi(x = Xj)™ Hlf\f”(x =A™
P(x) P(x)

i=1

B
>
et X — A
=1

17. En déduire que, pour x > X,

i - i 1
gl(X)Zl_(ZXTN) (Z (XTA,-)2> Xjrl_ﬁr.
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Correction

On calcule encore! On sait que

1
g(x) =x— Py
P(x)
1
=X— =+
Yo
On en déduit donc que pour tout x > A,
— i1 G
/ _ =1 (x=X\)
ge)=1+—-——"7—5 2
(Zi:l X—>\,>
_,_ Xy
"l Ay
(Zi:l X*S\,)
Mais,
.
> e o
- X — Aj) x=Xx (X — Ap
£ )2 )2
et
r
S
P X — N x=XA X — N
d’'ou

r m; my,
>im1 o )2 1
mf

r m; 2 X— N, X=X My
D=1 ok (=3

dou|dg'(x) — 1 — —.

-
18. En déduire que Xkl — Ar

1 1
1 — —, puis que, pour tout B dans ] 1-—1 [
Xp — Ap  n—+oo my my

Correction

Soit n € N. On sait que
Xn4+1 — >\r = g(Xﬂ) - g(>\l')r

donc, par le théoréme des accroissements finis, on dispose de y, €]\, x,[ tel que

Xppl — Ap = g/()/n)(xn X))~ (1 - I’T];> (X0 — Ar),

n—+o0 r

(étant donné que y, T A,) d’ol le résultat désiré. Ensuite, la régle de D'Alembert permet de
n——+o0o

conclure.
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C. Meéthode de Newton-Schulz pour calculer I'inverse d’une matrice

Le but de cette partie est de comprendre comment adapter la méthode de Newton, a priori une méthode
d'analyse, a des objets beaucoup plus algébriques, a savoir les matrices !

C-l. Une norme sur .#, ,(R)

Soient n et p deux entiers naturels non nuls. On pose, pour tout M dans .#, ,(R), [IM||, , = /Tr(MT M)
(ou MT désigne la transposée de M et Tr désigne la trace). Si n et p sont fixés et qu'il n'y a pas d’ambiguité,
on la note simplement || M||.

On veut démontrer que I'application M +— ||M|| est une norme sur .#, ,(R), c'est-a-dire qu'elle vérifie les
hypothéses suivantes :

a. (positivite) YM € 4, ,(R), ||M]| = 0,

b. (homogénéite) YM € 4, ,(R), VX € R, [[XM| = [A|. [[M]],

c. (séparation) VM € 4, ,(R), M| =0 M =0,,

d. (inégalité triangulaire) Y(M, N) € 4, ,(R)?, [|M + N|| < |[M]| + ||N]|.

19. Démontrer que les propriétés a., b. et c. sont vraies.

Correction

n p
On remarque que ||M|*> = ZZ me.

i=1 j=1
Soit M = (m,'j)lg,:gn S ./ﬂnp(R) Alors

1<ysp

N p
ZZm%)O.

i=1 j=1

b. Soit A € R. Alors

a. M|l =

nop

MM = |3 Omp)2 = [ A2) ) “m2 =)l

i=1 j=1 i=1 j=1

n p
SN m2 =M

i=1 j=1

n 1%
ZZm?j:O.

=1 j=1

c. Supposons que M = 0. Alors

n p
Réciproquement, si ||[M]| = 0, alors ZZmi = 0. Or, pour tout (/,)), m,-QJ- > 0, et, une
=1 j=1
somme de termes positifs étant nulle ssi chaque terme est nul, on en déduit que V(/,j) €
[1.n] x [1, p], mij = 0.

On a donc démontré les propriétés a., b. et c.

Pour démontrer I'inégalité triangulaire (propriété d.), on va démontrer I'inégalité de Cauchy-Schwarz :
V(U V) € My p(R)?, Tr(UTV) < |UIIVI-

On considére la fonction P : x — ||U + xV/|°.

20. Exprimer P comme un polyndme de degré 2 en x.
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Correction

Soit x dans R. Alors

P(x) = U +xVII*
= Tr((U +xV)T (U + xV))
= Tr(UTU + xUTV + xVTU + x2VTV) par linéarité de la transposition
= Tr(UTU) + xTr(UTV) + xTr(VTU) + x*Tr(VV) par linéarité de la trace
= [|U|® + 2xTr(UTV) + 2 V|17,
la derniére égalité venant du fait que Tr(V' U) = Tr((V"U)") = Tr(U"V) (la trace d'une matrice
égale la trace de sa transposée.

On a ainsi exprimé P comme un polyndéme de degré 2 en x, en supposant V' non nul (sinon, de
toute maniére, I'inégalité est triviale).

21. En étudiant le signe de P, en déduire I'inégalité de Cauchy-Schwarz.

Correction

Comme P(x) = ||U + xV/|?>, P est positif sur R. Ainsi son discriminant est négatif ou nul. On en
déduit que

4Tr(UTV)? = 4|lUIIPIVII < o,
i.e. que Tr(UTV)2 < ||UI? |IVI2, soit [Tr(UT V)| < Ul |IV]. Donc, a fortiori,

Tr(UTV) < ULV -

22. En déduire I'inégalité triangulaire.

Correction

Soient alors A et B dans .4, ,(R). Calculons

A+ B|>=Tr((A+ B) (A+ B)) = |AlI> + 2Tr(A" B) + || B,

par le méme raisonnement qu'a la question précédente. Mais, par I'inégalité de Cauchy-Schwarz,
Tr(ATB) < ||A[l 1B, d"ou

1A+ Bl < A2 + 2 AL Bl + 1811 = (Al + IIBI1)>.

d'ou ||[A+ BJ| < ||A|l + ||B]| étant donné que toutes les quantités sont positives.

23. Soient A, B dans .#,(R)?. Démontrer que si (Ay, ..., A,) sont les colonnes de A et (B, ..., B,) sont
n n
celles de B, alors ||AB?, = ZZTr(A,TBj)Q.

=1 j=1
On calcule : .
o
AT=|% |eB=(B1 B --- By).
- AT
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Donc, par produit par blocs, le terme (i, ) de AB est Al x B; (qui est bien dans .#; 1(R), donc
dans R. Ainsi, par définition de |||,

IAB]| = Zn:zn:(AfT x Bj)? = zn:zn:Tr(AiT x B))?,

i=1 j=1 i=1 j=1

car la trace d'une matrice de . 1(R) est I'unique valeur de cette matrice.

24. En déduire que lorsque I'on considére des matrices carrées, la norme ||-|| est une norme d’'algébre,
c'est-a-dire que
V(A B) € #,(R)?, |AB| < [|AlllIB]-

Soit (A, B) € .#,(R)?. On reprend les notations de la question précédente.
Par I'inégalité de Cauchy-Schwarz appliquée a la norme ||-||,, ;.

Tr(AT B) < AR, B2, -

Ainsi,
n n n n n n n n

IABI < DS T NAIR 1B, = <Z|A,-||%,1> SIBIZ, | = ( ai-) v ||=I1AIP1IBIP,
i=1 j=1 i=1 j=1 i=1 k=1 j=1 k=1

d'ou I'inégalité désirée !

25. Démontrer, en cherchant un exemple pour n = 2, que I'on a en général pas d'égalité entre ||AB|| et
A IBII.

4‘ Correction

Si I'on considére A = <1 L

1 0 .
0 0> et B= (_1 O)' alors AB = 0 mais ||A| ||B|| = 2.

C-l1l. Convergence d’une suite de matrices

Nous sommes désormais armés pour parler de la convergence d'une suite de matrices. On dit qu'une suite
de matrices (Xx)ken € #,(R)Y converge vers une matrice A si elle converge « coefficient par coefficient »,
c'est-a-dire que

V(I,_j) S [[]_, n]] , [Xk],'j k:w [A]U

On s’autorise alors la notation
Xy — A
k——+o00
1 1

0 1/2), alors la suite (M*).en converge vers une matrice

26. Un exemple. Démontrer que si M = <

dont on précisera les coefficients.
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Correction

Déja, comme M est triangulaire supérieure, toutes ses puissances sont triangulaires supérieures.

. L _ 1 _
De plus, on sait que les coefficients de la diagonale de M* seront 1% et —. On sait donc que pour

2k’
1 a
Kk _ K
= (o 1)
Mais alors, si k € N,

1

11 1 a I a+ 5

k+1 _ k _ k) = 2k
wert=aar = (5 15) % (o 1) !

tout k dans N, il existe a, tel que

ok+1

Ainsi, ax+1 = ax + oK donc, comme ag = 0, par récurrence immédiate, on en déduit que

1— % 1
VkGN,ak: = = = “a 1—? k_+>2
—+00

- 1 2
k 3
Donc (M) converge et sa limite égale (O 1/2>.

27. Démontrer que (Xy)ken € #,(R)Y converge vers A si, et seulement si || X, — Al P 0.
—+00

4‘ Correction

Raisonnons par double implication.
Supposons que (Xy)ken € #,(R)Y converge vers A. Alors

Xk = AIZ = Xk — AL}

i=1 j=1

Or, V(i,j) € [1,n]?, [Xk — A]?j = ([Xuli; — [Al;)? k:)m 0. Donc par somme (finie, indépen-

dante de k) sur les limites, | Xx — Al> — 0.
k—+o00

Supposons que || Xx — Al . 0. Soit (i,j) € [1, n]?. Alors
—+00

(X = [A1)? = Xk — ATG < DD Xk — Alze = 11X — Al s

s=1 t=1

donc, par encadrement, ([Xx]; — [A];j)? o7 0, ce qui signifie que [Xk];; P [Aljj, i.e.
—+o00 —+00

(Xk)ken converge vers A.

On admet les propositions suivantes : si (Xx)ken et (Yk)ken sont deux suites de matrices n x n convergeant
respectivement vers A et B, alors

Xe+Ye — A+ Bet XykYx — AxB.
k——+o00 k

—+o00
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C-11l. Une suite de matrices

Soit A € #,(R) une matrice inversible. On se demande si la relation trouvée a la question |6.| peut nous
permettre de calculer I'inverse de A. On pose alors

Xo € %n(R) et Vk € N, Xyp1 = Xk X (21,, — AXk)

Notre but est de démontrer que, sous certaines conditions, la suite (Xx)xen converge vers AL
On pose (Wi )ken la suite des erreurs, i.e.

vk e N, Wi =1, — X(A.

Plus W est petit, plus XcA est proche de 1, donc plus Xy est proche de AL,

28. Démontrer que (Wk)ken Vérifie la relation de récurrence : Vk € N, Wy = Wf. En déduire une
expression de W) pour tout k dans N.

Correction

Soit k € N. Alors

Wir1 =1, — Xep1A =1, — 2Xk A+ X AXA = (I, — X A)? = W2,
On en déduit par récurrence immédiate que pour tout k dans N,

Wi = W2

29. En déduire que la méthode de Newton pour les matrices converge localement, c'est-a-dire qu'il existe
€ > 0 tel que pour tout Xo tel que ||T, — XoA|| < ¢, alors la suite (Xx)xen converge vers A~L.

4‘ Correction

On en déduit que pour tout k dans N,

k
Wil < IWol®

(car la norme ||-|| est une norme d'algébre). Ainsi, si ||Wp]|| < 1, alors on en déduit que ||W0H2k T
—+00

0,ie. AXy — I, ie.
k—+o00

X=X Ax At — AL

k——+00

D’ou le résultat !

C-IV. Un cas de convergence

Dans cette derniére section, on suppose que A est une matrice a diagonale strictement dominante, c'est-a-dire

que
a,-,-| > Z |a,-j|.

1jgn
JF#

30. Démontrer que A est inversible. On pourra utiliser qu’'une matrice est inversible si et seulement si
VX e My1(R), AX=0= X=0.

Vi e [1,n],
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Correction

X1
Soit X = | | tel que AX =0,,.

Xn
Soit iy tel que |x;,| = max{|x;
n

,1 < i < n}. Alors en écrivant la ligne ig de la relation AX =0, on

obtient Z ai, jxj = 0, donc aj, i, X, = — Z aj, jxj, donc
j=1 1<<n
J#io
|afo,i0HXio| < Z |alb,j||xj| < Z |ai0,j||Xi0|,
1gy<sn 1<
J#io J neqip

ce qui est impossible si |x;,| # 0. Donc |x;,| = 0, donc X = 0 donc A est inversible.

31. On suppose A a diagonale fortement dominante, c'est-a-dire que

vie 1, n], lail >n Z |aij.

1<<n
J#I
Démontrer qu'en prenant
1
— (0)
a1l
o — P |
1
(0) —
ann

alors la suite (Xx)ken définie comme précédemment converge vers AL

Evaluons la norme de I, — AX; : Déja,
dil di2 di13 din
air di1 dn dil
dp1 a2 a3 azn
dpp  d2 a2 dno
AXg = s ’ 5
an1 an2 dnn
ann ann ann
donc
o _d2 A aw
dii dii a1
_a &
ao ano ao
I,— AXy = : :
an1 an2
_ _ 0
ann ann
On en déduit que
n 22
2 ]
1= AXolP =D > -
i=11gjgn i

JF!
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Mais, par caractére fortement dominant, on en déduit que pour tous i et j dans [1, n], |a;;| < |aii|.
2

E as EY

|3 < 1, donc % < : ”|. On en conclut que

Ainsi,
|air'| aj; ai/'|

n
- Axlt <Y 3 2
]

!

i=1 1j<n
J#I
Mais, par caractére fortement dominant,
la;| 1
DUNE =t
- |a/i‘ n
1<j<n
J#i

ce qui assure que
n
1
(1, — AXol? < Z} ~ <l
i=

IWo|| < 1, d’oul la convergence de (Wk)ken Vvers 0, et ainsi la convergence de (Xx)ken Vers

Ainsi,
AL

Epilogue. En fait, on a convergence méme dans le cas strictement dominant, mais c’est une autre histoire,
que I'on ne peut pas résoudre pour le moment...!
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