Notation du DS02 sur 122 pts

Partie A 8 minutes et 20 secondes sur 68 pts

Q1 2 pts

- explication propagation
- FL et AN de τ le temps de propagation

Q2 2 pts

- · schéma recopié avec taille correcte
- B et P en t = 0 sur le schéma

Q3 4 pts

- P en $t = -\tau$ sur le schéma
- B en $t = -\tau$ sur le schéma
- · direction de l'horizon sur le schéma
- α sur le schéma

Q4 1 pt

• réponse "mouvement rectiligne uniforme" (les 2 adjectifs doivent être présents)

Q5 2 pts

- FL de $\alpha = 2\pi D/(cT)$ justifiée
- AN avec 2 chiffres significatifs (CS) et unité (en degrés ou radians) $\alpha = 3.6 \times 10^{-2} \, \text{rad} = 2.1^{\circ}$

Q6 3 pts

- explication Soleil à l'horizon
- · correction intro
- élégance de la correction de l'intro

- recopie du schéma avec une taille correcte (Terre, O, B et la base cartésienne \vec{e}_x , \vec{e}_y)
- les 3 points M en $t = -\tau$, 0 et à un instant quelconque t > 0
- les 3 points S en $t = -\tau$, 0 et à un instant quel- Q18 1 pt conque t > 0
- les 3 bases $(\vec{e}_r, \vec{e}_\theta)$ en $t = -\tau$, 0 et à un instant quelconque t > 0

Q8 3 pts

- réponse $\dot{\theta} = \omega$
- réponse $\theta = \omega t$ justifiée
- sens $\vec{\omega}_{S/B}$ du pôle Nord vers le pôle Sud

Q9 2 pts

- $\overrightarrow{OM} = R\overrightarrow{e}_r$
- $\overrightarrow{OS} = R\overrightarrow{e}_r + D\overrightarrow{e}_\theta$

Q10 3 pts

- schéma pour expliquer la projection
- FLs ×4 $x_p(-\tau)$, $y_p(-\tau)$, $x_p(0)$ et $y_p(0)$ justifiée
- · les 4 ANs

Q11 1 pt

• FL de $\overrightarrow{OP}(t)$ justifié

Q12 5 pts

- · schéma à l'échelle ou plus grand mais avec une échelle simple avec la Terre, O et B
- M en $t = -\tau$ et en $t = -\tau/2$
- traits de construction des 2 positions de *M*
- P en $t = -\tau$ et en $t = -\tau/2$
- traits de construction des 2 positions de P

Q13 2 pts

- FL de \vec{v}_p/c justifiée
- lisibilité de l'établissement

Q14 4 pts

- · calcul numérique des échelles
- représentation des 3 vitesses
- lisibilité de la représentation
- · trajectoire du photon avec les valeurs numériques de l'énoncé

Q15 1 pt

• réponse $r = (c/\omega)(-\theta)$

Q16 6 pts

- FL de \vec{v} justifiée
- FL de à justifiée
- interprétation v_r
- interprétation v_{θ}
- interprétation *a*_r
- interprétation a_{θ}

Q17 9 pts

- · schéma appuyant la justification
- définition ψ
- réponse justifiée $\psi = \pm \theta$
- tracé des axes
- positions initiales et finales
- · tangentes initiales et finales
- traits de construction pour la tangente initiale
- point supplémentaire en $\tau/2$ par exemple
- traits de construction du point supplémentaire

· réponse justifiée par les applications numériques

Q19 3 pts

- relation $(\vec{u}_r, \vec{u}_\theta)$ avec $(\vec{e}_r, \vec{e}_\theta)$
- relation (\vec{u}_x, \vec{u}_y) avec (\vec{e}_x, \vec{e}_y)
- schéma pour justifier les relations

Q20 6 pts

- taille du schéma avec B = O justifié
- base (\vec{u}_x, \vec{u}_y)
- positions du photon en $t = -\tau, -\tau/2$ et 0
- explication construction position(s)
- explication construction tangente(s)

Q21 1pt

réponse justifiée

Q22 3 pts

- ligne droite
- $v_p > c$
- référentiel terrestre non galiléen

Partie B Un circuit d'ordre 2 sur 54 pts

Q23 4 pts

- schéma équivalent
- justification $u(+\infty)$
- FL $u(+\infty)$
- AN

Q24 5 pts

- relations u-i, loi des mailles et lois des noeuds
- · calculs justes
- présentation avec les définitions d'une part puis les calculs ensuite
- résultat équa diff sous forme canonique
- expressions ω_0 et Q et second membre

Q25 4 pts

- justification $u(0^+)$
- résultat u(0⁺)
- justification $du(0^+)/dt$
- résultat $du(0^+)/dt$

Q26 5 pts

- forme de la solution homogène
- point de départ de A et B (ou C et φ) avec donc solution complète
- calculs
- résultats des deux constantes
- présentation de u(t) en entier

Q27 4 pts

- justification réglage GBF
- amplitude 1.5 V ou amplitude pic à pic 3 V
- offset de 1.5 V
- fréquence de 10 Hz ou cohérente

Q28 3 pts

- $Q \simeq 10$ justifiée succintement (avec Q nombres d'oscillations)
- $\omega \simeq \omega_0$ justifiée
- ordre de grandeur de l'erreur

Q29 2 pts

- $\omega_0 \simeq 1/\sqrt{LC}$ justifiée
- ordre de grandeur de l'erreur relative

Q30 6 pts

- explications graphiques de la mesure de T_0
- explication de la mesure de T_0
- résultat $T_0 = 2.213 \text{ ms}$
- explications graphiques de la mesure de $u(T_0)$
- explication de la mesure de $u(T_0)$
- résultat $u(T_0) = 0.043 \text{ ms}$

Q31 5 pts

- établissement $\delta \simeq \pi/Q$ avec définition, calculs, résultat exact puis approximation
- explication $u(\infty) \simeq 0$
- explication formule $\delta = (1/n) \ln(u_0/u_n)$

- mesures graphiques u₀ et u_n
- résultats $\delta = 0.287$ et Q = 10.9

Q32 8 pts

- explications $u(u_0)$ et $u(u_n)$
- résultats $u(d_{u_0}) = 0.20/\sqrt{3}$ cm et $u(d_{u_n}) = 0.23/\sqrt{3}$ cm
- module numpy
- paramètres physiques d0, Dd0, d9, Dd9 ou équivalent
- paramètre numérique N
- simulation de N valeurs aléatoires de d0 et d9
- calculs de N valeurs aléatoires de Q
- moyenne \overline{Q} et incertitude type u(Q)

Q33 5 pts

- point de départ *L* et *C*
- calculs
- FLs ×2
- ANs
- · les deux couples de solution

Q34 3 pts

- justification *Q* \ donc régime apériodique
- problème de synchronisation
- régler la synchronisation sur le potentiel du GBF et non sur le potentiel mesuré