PROGRAMME DE COLLES

Semaine 6 : du 3 au 7 novembre

Quelques exemples (liste non exhaustive) de questions de cours :

- Loi d'association de 2 condensateurs en série / en parallèle (formule + démo)
- Loi d'association de 2 bobines en série / en parallèle (formule + démo)
- Pont diviseur de tension / de courant (schéma, formule et démo)
- Circuit RC série soumis à un échelon de tension montant / descendant (réponse en tension aux bornes du condensateur)
- Circuit RL série soumis à un échelon de tension montant / descendant (réponse en courant)

CHAPITRE E1 : BASES DES CIRCUITS ÉLECTRIQUES COURS ET EXERCICES

Ce qu'il faut SAVOIR
☐ Condition d'application de l'ARQS en fonction de la taille du circuit et de la fréquence
☐ Vocabulaire du circuit : branche, noeud, maille, dipôle, régime variable et continu
☐ Charge électrique, intensité du courant traversant un dipôle, utilisation d'un ampèremètre
Dotentiel, tension aux bornes d'un dipôle, utilisation d'un voltmètre, notion de masse
☐ Lois de Kirchhoff (loi des noeuds, loi des mailles)
Dipôle en convention récepteur / générateur, en série / en parallèle, caractéristique, puissance reçue par un dipôle (relation générale $\mathcal{P}=ui$)
Conducteur ohmique : loi d'Ohm, associations série et parallèle
☐ Montages diviseurs de tension et de courant
Générateur idéal de tension
Générateur réel (modèle de Thévenin uniquement)
\square Condensateur idéal : capacité, relations $q=Cu$ et $i=C\frac{du}{dt}$, lois d'association, énergie et puissance reçue
\square Bobine idéale : inductance, relation $u=L\frac{di}{dt}$, lois d'association, énergie et puissance reçue
Ce qu'il faut SAVOIR FAIRE
\Box Identifier un noeud, une branche et une maille dans un circuit électrique \Rightarrow Appli 1
☐ Utiliser les lois de Kirchhoff
$\begin{tabular}{l} \square & \textbf{Algébriser les grandeurs électriques (tension et intensité) et utiliser les conventions récepteur et générateur} \\$
☐ Calculer la puissance électrique reçue / fournie par un dipôle dans un circuit
Reconnaître et utiliser un pont diviseur de tension ou de courant dans un montage
Remplacer une association série ou parallèle de deux résistances/condensateurs/bobines par une résistance/condensateur/bobine équivalente
Établir l'expression de l'énergie stockée dans un condensateur.
Établir l'expression de l'énergie stockée dans une bobine.

SUITE AU VERSO

CHAPITRE E2 : CIRCUITS ÉLECTRIQUES DU 1er ORDRE COURS ET EXERCICES

Ce qu'il faut SAVOIR
\square Circuit RC série : montage, équation différentielle vérifiée par u_c aux bornes du condensateur
Réponse à un échelon de tension montant (charge du condensateur) ou descendant (décharge du condensateur), temps caractéristique, durée du régime transitoire
☐ Bilan énergétique sur le circuit RC série (énergie stockée et dissipée)
☐ Circuit RL série : montage, équation différentielle vérifiée par l'intensité qui traverse le circuit
Réponse à un échelon montant ou descendant, temps caractéristique, durée du régime transitoire
Ce qu'il faut SAVOIR FAIRE
☐ Etablir et résoudre l'équation différentielle vérifiée par la tension aux bornes du condensateur dans un circuit RC en tenant compte des conditions initiales
$\hfill \Box$ Établir et résoudre l'équation différentielle vérifiée par i dans un circuit RL.
Déterminer un ordre de grandeur de la durée du régime transitoire
Effectuer un bilan énergétique au cours d'un régime transitoire

 FIN