PROGRAMME DE COLLES

Semaine 8 : du 17 au 21 novembre

Quelques exemples (liste non exhaustive) de questions de cours :

- Circuit RC série soumis à un échelon de tension montant / descendant (réponse en tension aux bornes du condensateur)
- Circuit RL série soumis à un échelon de tension montant / descendant (réponse en courant)
- Réaction chimique d'ordre 0 ou 1 ou 2 : établir l'expression de la concentration en réactif en fonction du temps, représentation graphique, temps de demi-réaction, unité de k
- Circuit LC série soumis à un échelon de tension : équation différentielle, forme des solutions, résolution complète avec des conditions initiales données
- ullet Circuit RLC série soumis à un échelon de tension : équation différentielle, forme générale des solutions selon la valeur de Q.

CHAPITRE E2 : CIRCUITS ÉLECTRIQUES DU 1er ORDRE COURS ET EXERCICES

Ce qu'il faut SAVOIR
\square Circuit RC série : montage, équation différentielle vérifiée par u_c aux bornes du condensateur
Réponse à un échelon de tension montant (charge du condensateur) ou descendant (décharge du condensateur), temps caractéristique, durée du régime transitoire
Bilan énergétique sur le circuit RC série (énergie stockée et dissipée)
☐ Circuit RL série : montage, équation différentielle vérifiée par l'intensité qui traverse le circuit
Réponse à un échelon montant ou descendant, temps caractéristique, durée du régime transitoire
Ce qu'il faut SAVOIR FAIRE
☐ Etablir et résoudre l'équation différentielle vérifiée par la tension aux bornes du condensateur dans un circuit RC en tenant compte des conditions initiales
\square Établir et résoudre l'équation différentielle vérifiée par i dans un circuit RL.
Etablir et resoudre l'equation différentielle verifiee par i dans un circuit RL. Déterminer un ordre de grandeur de la durée du régime transitoire

SUITE AU VERSO

CHAPITRE Ch2 : CINÉTIQUE CHIMIQUE COURS et EXERCICES

Les étudiants doivent savoir faire une régression linéaire à la calculatrice. On pourra par exemple demander en question de cours de vérifier l'ordre d'une réaction en traçant la bonne courbe (à partir de données fournies), puis d'en déduire la constante de vitesse.

Ce qu'il faut SAVOIR
☐ Vitesses / vitesses volumiques d'apparition et de disparition, vitesse spécifique de réaction
☐ Temps de demi-réaction
Ordre de réaction : réaction avec et sans ordre, constante de vitesse, ordres partiels, ordre global
\square Cas simples des ordres 0, 1 et 2 : concentration en réactif en fonction du temps, représentation graphique, temps de demi-réaction, unité de k
Loi empirique d'Arrhénius, énergie d'activation
CHAPITRE E3 : CIRCUITS LINÉAIRES DU SECOND ORDRE : OSCILLATEURS COURS seulement
Ce qu'il faut SAVOIR
\square Modèle du circuit LC série : mise en équation, pulsation propre ω_0 , résolution avec les conditions initiales, représentations graphiques.
\square Modèle du circuit RLC série : mise en équation, pulsation propre ω_0 et facteur de qualité Q .
☐ Forme canonique de l'équa. diff. et forme des solutions pour un oscillateur harmonique amorti ou non.
Ce qu'il faut SAVOIR FAIRE
Établir l'équation différentielle qui caractérise l'évolution d'une grandeur électrique dans un circuit du deuxième ordre. La mettre sous forme canonique et reconnaitre un oscillateur harmonique amorti ou non
Résoudre cette équation différentielle compte-tenu des conditions initiales et éventuellement de la valeur du facteur de qualité
Pour un oscillateur amorti, déterminer un ordre de grandeur de la durée du régime transitoire selon la valeur du facteur de qualité.
Réaliser un bilan énergétique (fait pour le circuit LC et RLC série)
Reconnaitre graphiquement un oscillateur amorti ou non, déterminer les grandeurs caractéristiques (pulsation propre, amplitude, durée du régime transitoire)

FIN