PROGRAMME DE COLLES

Semaine 9 : du 24 au 28 novembre

Quelques exemples (liste non exhaustive) de questions de cours :

- Réaction chimique d'ordre 0 ou 1 ou 2 : établir l'expression de la concentration en réactif en fonction du temps, représentation graphique, temps de demi-réaction, unité de k
- Circuit LC série soumis à un échelon de tension : équation différentielle, forme des solutions, résolution complète avec des conditions initiales données
- ullet Circuit RLC série soumis à un échelon de tension : équation différentielle, forme générale des solutions selon la valeur de Q.
- Formules de Lewis à trouver à partir de la formule brute et éventuellement d'indications sur la symétrie ou sur la nature de l'atome central

CHAPITRE Ch2 : CINÉTIQUE CHIMIQUE

COURS et EXERCICES

Les étudiants doivent savoir faire une régression linéaire à la calculatrice. On pourra par exemple demander en question de cours de vérifier l'ordre d'une réaction en traçant la bonne courbe (à partir de données fournies), puis d'en déduire la constante de vitesse.

Ce qu'il faut SAVOIR
☐ Vitesses / vitesses volumiques d'apparition et de disparition, vitesse spécifique de réaction
☐ Temps de demi-réaction
Ordre de réaction : réaction avec et sans ordre, constante de vitesse, ordres partiels, ordre global
\square Cas simples des ordres 0, 1 et 2 : concentration en réactif en fonction du temps, représentation graphique, temps de demi-réaction, unité de k
Loi empirique d'Arrhénius, énergie d'activation
Ce qu'il faut SAVOIR FAIRE
Déduire l'énergie d'activation à partir d'une série de données par une méthode graphique ou numérique
Déterminer par une méthode graphique ou numérique :
- un ordre à l'aide de la méthode différentielle ou intégrale
- un ordre à partir de données sur les temps de demi-réaction
- un ordre global dans un cas d'un mélange stoechiométrique
- un ordre partiel dans un cas de dégénérescence de l'ordre

SUITE AU VERSO

CHAPITRE E3 : CIRCUITS LINÉAIRES DU SECOND ORDRE : OSCILLATEURS COURS et EXERCICES

Ce qu'il faut SAVOIR
\square Modèle du circuit LC série : mise en équation, pulsation propre ω_0 , résolution avec les conditions initiales, représentations graphiques.
\square Modèle du circuit RLC série : mise en équation, pulsation propre ω_0 et facteur de qualité Q .
\square Forme canonique de l'équa. diff. et forme des solutions pour un oscillateur harmonique amorti ou non.
Ce qu'il faut SAVOIR FAIRE
Établir l'équation différentielle qui caractérise l'évolution d'une grandeur électrique dans un circuit du deuxième ordre. La mettre sous forme canonique et reconnaitre un oscillateur harmonique amorti ou non
Résoudre cette équation différentielle compte-tenu des conditions initiales et éventuellement de la valeur du facteur de qualité
Pour un oscillateur amorti, déterminer un ordre de grandeur de la durée du régime transitoire selon la valeur du facteur de qualité.
Réaliser un bilan énergétique (fait pour le circuit LC et RLC série)
Reconnaitre graphiquement un oscillateur amorti ou non, déterminer les grandeurs caractéristiques (pulsation propre, amplitude, durée du régime transitoire)
CHAPITRE Ch3 : STRUCTURE DES ENTITÉS CHIMIQUES COURS seulement
Ce qu'il faut SAVOIR
☐ Liaison covalente : ordres de grandeur de la longueur et de l'énergie d'une liaison covalente.
☐ Citer et identifier les exceptions à la règle de l'octet.
☐ Electronégativité, liaison polarisée, moment dipolaire, molécule polaire
Ce qu'il faut SAVOIR FAIRE
Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de sa position dans la classification périodique
☐ Etablir un schéma de Lewis pertinent pour une molécule ou un ion polyatomique
Relier l'existence ou non d'un moment dipolaire permanent à la structure géométrique donnée d'une molécule
Déterminer la direction et le sens du vecteur moment dipolaire d'une liaison ou d'une molécule de géométrie donnée

FIN