Cours

Enoncé l'inégalité de Cauchy-Scwharz dans le cas de nombres complexes. Enoncé l'inégalité triangulaire dans le cas de nombres complexes.

Application cours 1

Soit A et B deux sous-ensembles d'un ensemble E. Montrer que

$$A \cup B = A \cap C \iff B \subset A \subset C$$

Application cours 2

Déterminer les entiers naturels n tels que $(1+i)^n \in \mathbb{R}$.

Exercice 1

Soit θ .

Donner la forme trigonométrique de $1 + \sin(\theta) + i\cos(\theta)$.

Exercice 2

Résoudre dans C l'équation

$$z^2 + (4 - 3i)z - 2 - 8i = 0.$$

Cours

Application inversible à droite.

Application cours 1

Soit A et B deux sous-ensembles d'un ensemble E. Montrer que

$$A \subset B \iff A \cup B = B$$

Application cours 2

On définit sur \mathbb{C} la relation \mathcal{R} par

$$\forall (z, z') \in \mathbb{C}^2, \quad (z\mathcal{R}z' \iff |z| = |z'|)$$

- 1) Montrer que \mathcal{R} est une relation d'équivalence sur \mathbb{C} .
- 2) Interpréter géométriquement les classes d'équivalence.

Exercice

On considère le nombre complexe $j = e^{\frac{2i\pi}{3}}$.

- 1) Pour tout entier $k \in \mathbb{N}$, donner la valeur de $1 + j^k + j^{2k}$.
- 2) Soit $n \in \mathbb{N}$.
 - a) Exprimer sous la forme d'une somme la quantité :

$$(1+1)^n + (1+j)^n + (1+j^2)^n$$
.

b) En déduire la valeur de la somme $\sum_{k=0}^{\lfloor n/3 \rfloor} \binom{n}{3k}$.

Cours

Formules de De Moivre.

Application cours 1

Soit A et B deux sous-ensembles d'un ensemble E. Montrer que

$$A \cap B = A \cup B \iff A = B$$

Application cours 2

Déterminer les entiers naturels n tels que $(\sqrt{3}+i)^n \in i\mathbb{R}$.

Exercice

Soit E un ensemble et $A \in \mathcal{P}(E)$. On définit une relation \mathcal{R} sur $\mathcal{P}(E)$ en posant :

$$\forall X, Y \in \mathscr{P}(E), \quad X\mathcal{R}Y \iff X \cap A = Y \cap A.$$

- 1) Montrer que \mathcal{R} est une relation d'équivalence sur $\mathscr{P}(E)$.
- 2) Montrer que l'application bijective de $\mathscr{P}(A) \to \mathscr{P}(E)/\mathcal{R}$ est bijective.

$$B \rightarrow \dot{B}$$

Cours

Forme trigonométrique et existence

Application cours 1

Soit A et B deux sous-ensembles d'un ensemble E. Montrer que

$$A \cup B = A \cap C \iff B \subset A \subset C$$

Application cours 2

Résoudre dans \mathbb{C} l'équation

$$3z^2 - 5z + 8 = 0$$

Exercice

On définit une relation $\sim \sup \mathbb{R}_+^*$ en posant :

$$\forall x, y \in \mathbb{R}_+^*, \quad x \sim y \Longleftrightarrow \frac{\ln(x)}{y} = \frac{\ln(y)}{x}.$$

- 1) Montrer que \sim est une relation d'équivalence sur \mathbb{R}_+^* .
- 2) Soit $x \in \mathbb{R}_+^*$. Déterminer le nombre d'éléments de la classe d'équivalence de x.

Cours

Application inversible à gauche.

Application cours 1

Soit A et B deux sous-ensembles d'un ensemble E. Montrer que

$$A \subset B \iff A \cup B = B$$

Application cours 2

Déterminer les entiers naturels n tels que $(1+i)^n \in \mathbb{R}$.

Exercice

On note $\mathbb U$ l'ensemble des nombres complexes de module 1.

1) Vérifier que :

$$\forall z \in \mathbb{U}, \quad \frac{1}{z} = \overline{z}.$$

- 2) Soit la fonction $\varphi: z \longmapsto |1+iz|^2 + |z+i|^2$. Que peut-on dire de la restriction de φ à \mathbb{U} .
- 3) Pour tout $z \in \mathbb{U} \setminus \{1\}$, calculer Re $\left(\frac{1}{1-z}\right)$.

Cours

Formules de De Moivre.

Application cours 1

Soit A et B deux sous-ensembles d'un ensemble E. Montrer que

$$A \cap B = A \cup B \iff A = B$$

Application cours 2

Déterminer les entiers naturels n tels que $(\sqrt{3}+i)^n \in i\mathbb{R}$.

Exercice

On définit une relation binaire \leq sur $\mathscr{I} = \{z \in \mathbb{C} \mid \text{Im}(z) \geq 0\}$ par :

$$\forall z,z'\in\mathscr{I},\quad z\preccurlyeq z'\Longleftrightarrow (|z|<|z'|\text{ ou }(|z|=|z'|\text{ et }\operatorname{Re}(z)\leqslant\operatorname{Re}(z')))\,.$$

Montrer que \leq est une relation d'ordre totale sur \mathscr{I} .