Cours

Primitives de $x \mapsto e^{\lambda x}$ pour $\lambda \in \mathbb{C}$.

Application cours 1

Déterminer les primitives de la fonction $f: x \mapsto \frac{x}{1+x^2}$.

Exercice 1

Pour $n \ge 1$, donner une primitive de $\ln^n x$.

Exercice 2

Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables et telles que $\forall x \in \mathbb{R}, \ f'(x) + f(x) = \int_0^1 f(t) \, dt.$

Cours

Changement de variables

Application cours 1

Déterminer les primitives de la fonction $f: x \mapsto \frac{e^{3x}}{1 + e^{3x}}$.

Application cours 2

Résoudre l'équation différentielle $y' - \frac{y}{x} = x^2$ sur $]0, +\infty[$.

Exercice 1

Calculer l'intégrale $J = \int_0^1 x(\operatorname{Arctan} x)^2 dx$

Cours

Description des solutions d'une EDL

Application cours 1

Déterminer les primitives de la fonction $f: x \mapsto \frac{\ln x}{x}$.

Application cours 2

Calculer
$$\int_0^1 \frac{\mathrm{d}t}{1 + \mathrm{e}^t}$$

Exercice

Résoudre sur $\mathbb R$ l'équation différentielle

$$ty' + y = -\sin t.$$

Cours

Résolution d'une EDL d'ordre 1

Application cours 1

Déterminer les primitives de la fonction $f: x \mapsto \cos(x)\sin^2(x)$.

Application cours 2

Résoudre l'équation différentielle $y' - \frac{2}{t}y = t^2$ sur $]0, +\infty[$.

Exercice

Soit $(\alpha, \beta, n) \in \mathbb{R}^2 \times \mathbb{N}$. Calculer

$$\int_{\alpha}^{\beta} (t - \alpha)^n (t - \beta)^n dt.$$

Cours

Principe de superposition

Application cours 1

Déterminer les primitives de la fonction $f: x \mapsto \frac{1}{x \ln x}$.

Application cours 2

Calculer l'intégrale
$$\int_{-1}^{1} \sqrt{1-t^2} \, \mathrm{d}t$$

Exercice

Résoudre sur $\mathbb R$ l'équation différentielle

$$ty'(t) + y(t) = -\sin t.$$

Cours

Description des solutions d'une EDL

Application cours 1

Déterminer les primitives de la fonction $f: x \mapsto 3x\sqrt{1+x^2}$.

Application cours 2

Résoudre l'équation différentielle $y' - \frac{y}{x} = x^2$ sur $]0, +\infty[$.

Exercice

On pose $W_n = \int_0^{\frac{\pi}{2}} \sin^n t \, dt$ pour tout $n \in \mathbb{N}$. Ces intégrales sont appelées les intégrales de Wallis.

- **1.** Montrer que $W_n = \frac{n-1}{n}W_{n-2}$ pour tout $n \ge 2$.
- **2.** En déduire une expression explicite de W_{2n} et W_{2n+1} faisant intervenir $\binom{2n}{n}$ pour tout $n \in \mathbb{N}$.