Cours

 \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

Application cours 1

Résoudre sur \mathbb{R} , l'équation différentielle $y'' - 3y' + 2y = e^{2x}$

Exercice 1

Montrer que $A = \left\{\frac{1}{p} + \frac{1}{q} \mid (p,q) \in \mathbb{N}^* \times \mathbb{N}^* \right\}$ admet une borne inférieure et une borne supérieure que l'on déterminera.

Exercice 2

Soit E et F deux parties non vides de $\mathbb R$ telles que $E\subset F$ et F est bornées.

- 1. Montrer que E et F admettent des bornes inférieures et supérieures.
- **2.** Montrer que inf $F \leq \inf E \leq \sup E \leq \sup F$.

Cours

Résolution d'une éuqation différentielle du second ordre à coefficients constants dans \mathbb{C} .

Application cours 1

Résoudre sur \mathbb{R} , l'équation différentielle $y'' + 4y = x^2 + 3x - 1$.

Application cours 2

Pour chacun des ensembles suivants. Dire s'ils admettent une borne inférieure (resp. une borne supérieure). Le cas échéant, précisre s'il s'agit d'un minimum (resp. d'un maximim).

$$\mathbf{1.} \ A = \left\{ \frac{3n}{3n+2} \mid n \in \mathbb{N} \right\}.$$

2.
$$B = \{x \in \mathbb{Q} \mid x^2 \geqslant 9\}.$$

Exercice 1

Montrer qu'entre deux réels distincts, il existe une infinité de rationnels.

Cours

Toute partie non vide minorée de \mathbb{R} admet une borne inférieure.

Application cours 1

Résoudre sur \mathbb{R} , l'équation différentielle $y'' + y' - 2y = \sin(3x)$.

Exercice 1

Montrer que $A = \left\{ \frac{2xy}{x^2 + y^2} \mid (x, y) \in \mathbb{R}^* \times \mathbb{R}^* \right\}$ admet une borne inférieure et une borne supérieure que l'on déterminera.

Exercice 2

Montrer que toute partie non vide majorée de \mathbb{Z} admet un plus grand élément. Soit E une partie non vide et bornée de \mathbb{R} . Montrer que l'intervalle $[\inf E, \sup E]$ est le plus petit intervalle fermé [a,b] de \mathbb{R} tel que $E \subset [a,b]$.

Cours

Caractérisations de la borne supérieure.

Application cours 1

Résoudre sur \mathbb{R} , l'équation différentielle $y'' - 2y' + 2y = 2e^x \cos(x)$.

Exercice 1

Montrer que $A = \left\{ \frac{mn}{(m+n)^2} \mid (m,n) \in \mathbb{N}^* \times \mathbb{N}^* \right\}$ admet une borne inférieure et une borne supérieure que l'on déterminera.

Exercice 2

Montrer qu'entre deux réels distincts, il existe une infinité de rationnels.

Cours

Lien pge et borne supérieure.

Application cours 1

Résoudre sur \mathbb{R} , l'équation différentielle $y'' - 4y' + 3y = xe^x$.

Application cours 2

Pour chacun des ensembles suivants. Dire s'ils admettent une borne inférieure (resp. une borne supérieure). Le cas échéant, précisre s'il s'agit d'un minimum (resp. d'un maximim).

$$\mathbf{1.} \ A = \left\{ \frac{3n}{3n+2} \mid n \in \mathbb{N} \right\}.$$

2.
$$B = \{x \in \mathbb{Q} \mid x^2 \geqslant 9\}.$$

Exercice

Soit A une partie de \mathbb{R} . On rappelle que $A^c = \mathbb{R} \setminus A$.

- 1. Donner un exemple de A tel que A^c soit majoré; minoré; borné.
- **2.** Montrer que si A^c alors sup A^c est le plus petit réel tel que $M, +\infty \subset A$.
- 3. Montrer qu'on ne peut pas avoir à la fois A et A^c majorés

Cours

Toute partie non vide minorée de \mathbb{R} admet une borne inférieure.

Application cours 1

Résoudre sur \mathbb{R} , l'équation différentielle $y'' + 4y = e^{-x}\cos(2x)$ sur \mathbb{R} .

Exercice 1

Montrer que toute partie non vide minorée de \mathbb{Z} admet un plus petit élément.

Exercice 2

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction majorée. Pour tout $y \in \mathbb{R}$, on pose

$$f^*(y) = \sup_{x \le y} f(x).$$

- 1. Illustrer cette définition de f^* sur différents exemples de fonctions f dessinées à main levée.
- 2. Déterminer f^* dans le cas où f est croissante.
- **3.** Étudier la monotonie de f^* .