Cours

Existence et unicité de la partie entière.

Application cours 1

Soit A et B deux parties non vides de \mathbb{R} . On suppose que tout élément de A est inférieur à tout élément de B et que :

$$\forall \varepsilon > 0, \ \exists (a, b) \in A \times B, b - a < \varepsilon.$$

Montrer que sup $A = \inf B$.

Application cours 2

Étudier la limite des suites de terme général :

$$1. \ \frac{1+2\sin n}{\sqrt{n}}$$

1.
$$\frac{1+2\sin n}{\sqrt{n}}$$
 2. $\frac{\ln ((n+3))^n}{n^{\ln(n+3)}}$

Exercice 1

Soient (u_n) et (v_n) deux suites à valeurs dans [0;1] telles que $u_nv_n \xrightarrow[n \mapsto +\infty]{} 1$. Montrer que les deux suites convergent vers 1.

Cours

Définition de la convergence

Application cours 1

Étudier la limite des suites de terme général :

1.
$$\frac{\lfloor \sqrt{n} \rfloor}{n}$$

1.
$$\frac{\lfloor \sqrt{n} \rfloor}{n}$$
 2. $\sqrt{n^2 + n} - \sqrt{n^2 - n}$

Exercice 1

Soit $(v_n)_{n \le in \mathbb{N}^*}$ la suite définie pour tout $n \in \mathbb{N}^*$ par

$$v_n = \sum_{k=n}^{2n} \frac{1}{k}$$

Etudier la convergence de $(v_n)_{n\in\mathbb{N}^*}$.

Exercice 2

Résoudre dans \mathbb{R} , $\lfloor 2x \rfloor = 5 + \lfloor -x \rfloor$

Cours

Limite de
$$\left(\frac{1}{u_n}\right)$$

Application cours 1

Soit
$$x$$
 un réel.
Montrer que $\lfloor x \rfloor + \lfloor 2x \rfloor + \lfloor 3x \rfloor \leqslant \lfloor 6x \rfloor$.

Exercice 1

Etudier la limite de la suite (u_n) de terme général

$$\frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor.$$

Cours

Théorème de la limite monotone

Application cours 1

Etudier la limite de la suite (u_n) de terme général

$$u_n = \sum_{k=1}^{n} \frac{1}{n^2 + k^2}$$

Exercice 1

Résoudre dans $\mathbb R$ l'équation d'inconnue x

$$\lfloor x \rfloor = \left\lfloor x + \frac{1}{2} \right\rfloor$$

Exercice 2

Soient (u_n) et (v_n) deux suites à valeurs dans [0;1] telles que $u_n v_n \xrightarrow[n \to +\infty]{} 1$. Montrer que les deux suites convergent vers 1.

Cours

Produit d'une suite bornée et d'une suite convergeant vers 0

Application cours 1

Soit x un réel.

Montrer que $\lfloor 2x \rfloor + \lfloor 3x \rfloor + \lfloor 4x \rfloor \leqslant \lfloor 9x \rfloor$.

Application cours 2

Étudier la limite des suites de terme général:

1.
$$\frac{\lfloor \sqrt{n} \rfloor}{n}$$

1.
$$\frac{\lfloor \sqrt{n} \rfloor}{n}$$
 2. $\sqrt{n^2 + n} - \sqrt{n^2 - n}$

Exercice 1

Soit $(v_n)_{n\in\mathbb{N}^*}$ la suite définie pour tout $n\in\mathbb{N}^*$ par

$$v_n = \sum_{k=n+1}^{2n} \frac{1}{k}$$

Etudier la convergence de $(v_n)_{n\in\mathbb{N}^*}$.

Cours

Limite d'une somme de suites

Application cours 1

Étudier la limite des suites de terme général:

1.
$$\frac{1 + 2 \operatorname{Arctan} n}{\sqrt{n}}$$

$$2. \frac{(\ln(n+3))^n}{n^{\ln(n+3)}}$$

Application cours 2

Soit A et B deux parties non vides de \mathbb{R} . On suppose que tout élément de A est inférieur à tout élément de B et que :

$$\forall \varepsilon > 0, \ \exists (a,b) \in A \times B, b-a < \varepsilon.$$

Montrer que sup $A = \inf B$.

Exercice 1

Soit x un réel positif.

Étudier la limite des suites de terme général :

$$\sqrt{e^n + x^n} - \sqrt{e^n + 1}$$