Devoir en temps libre 6

Pour le 25 novembre

Utiliser des copies doubles. Encadrer les résultats. Laisser une marge. Traiter au choix (1 et 2) ou (1 et 3)

Exercice 1

On définit la suite $(T_n)_{n\in\mathbb{N}}$ par

$$\forall n \in \mathbb{N}, \quad T_n = \sum_{k=0}^n (-1)^k (\ln(k+2) - \ln(k+1)).$$

Montrer que la suite $(T_n)_{n\in\mathbb{N}}$ converge.

Exercice 2

Soit r un réel tel que r > 1. On considère les suites a et b définies par :

$$a_0 = 1$$
, $b_0 = r$ et $\forall n \in \mathbb{N}$, $a_{n+1} = \frac{2a_n b_n}{a_n + b_n}$, $b_{n+1} = \frac{a_n + b_n}{2}$.

- 1. Montrer que les suites a et b sont correctement définies et à termes strictement positifs.
- **2.** Établir pour tout $n \in \mathbb{N}$ la relation :

$$b_{n+1} - a_{n+1} = \frac{(b_n - a_n)^2}{2(b_n + a_n)}.$$

- **3.** En déduire que pour tout $n \in \mathbb{N}$, $a_n \leqslant b_n$.
- 4. Étudier la monotonie des suites a et b.
- 5. Démontrer que les suites a et b convergent vers deux réels notés ℓ_a et ℓ_b .
- **6.** Démontrer que $\ell_a = \ell_b$. On notera désormais ℓ leur limite commune.
- 7. En considérant la suite $(a_n b_n)_{n \in \mathbb{N}}$, déterminer la valeur de ℓ .
- **8.** a) Justifier que pour tout $n \in \mathbb{N}$, $\frac{a_n b_n a_n^2}{a_n b_n + a_n^2} \leqslant \frac{r-1}{r+1}$.
 - **b)** En déduire que pour tout $n \in \mathbb{N}$, $b_{n+1} a_{n+1} \leqslant \frac{(r-1)}{2(r+1)}(b_n a_n)$.
- **9.** On suppose désormais que r=2.
 - a) Démontrer: $\forall n \in \mathbb{N}, 0 \leqslant b_n a_n \leqslant \frac{1}{6^n}$.
 - b) Déterminer un entier n tel que a_n et b_n constituent un encadrement de $\sqrt{2}$ d'amplitude au plus 10^{-12} .
 - c) Écrire un script Python permettant de calculer, pour tout entier naturel $k \in [0; 14]$, à l'aide des suites a et b un encadrement de $\sqrt{2}$ d'amplitude au plus 10^{-k} .

Exercice 3

Dans cet exercice, on considère l'ensemble, noté \mathcal{S} , des suites $(u_n)_{n\geqslant 0}$ à valeurs réelles et telles que

$$u_{n+1} = \frac{\exp(u_n)}{n+1}$$

pour tout entier $n \ge 0$.

Pour tout nombre réel x, on note u(x) la suite appartenant à S et dont le premier terme vaut x. On note également $u_n(x)$ le terme d'indice n de cette suite. Ainsi, $u_0(x) = x$ et $u_1(x) = \exp(x)$.

- 1. Démontrer que toute suite appartenant à \mathcal{S} est strictement positive à partir du rang 1.
- **2.** Soit $(u_n)_{n\geqslant 0}$ une suite appartenant à \mathcal{S} . Démontrer que s'il existe un rang $N\geqslant 2$ pour lequel $u_N\leqslant 1$, alors $(u_n)_{n\geqslant 0}$ converge vers 0.
- **3.** Soit $(u_n)_{n\geqslant 0}$ une suite appartenant à \mathcal{S} . Démontrer que si cette suite ne converge pas vers 0, alors elle diverge vers $+\infty$.

Ci-dessous, on note E_0 l'ensemble des réels x pour lesquels la suite u(x) converge vers 0, et E_{∞} l'ensemble des réels x pour lesquels u(x) diverge vers $+\infty$.

- **4.** Démontrer que $E_0 \neq \emptyset$.
- **5.** a) Démontrer, pour tout entier $n \ge 0$, que la fonction $x \mapsto u_n(x)$ est strictement croissante sur \mathbb{R} .
 - b) En déduire que, si x est un élément de E_0 , alors l'intervalle $]-\infty,x]$ est inclus dans E_0 .
- **6.** a) Démontrer que la fonction $x \mapsto \exp(x) x(x+1)$ est strictement positive sur l'intervalle $[2, +\infty[$.
 - **b)** Soit $(u_n)_{n\geqslant 0}$ une suite appartenant à \mathcal{S} . Démontrer que, s'il existe un rang $N\geqslant 1$ pour lequel $u_N\geqslant N+1$, alors $(u_n)_{n\geqslant 0}$ diverge vers $+\infty$.
 - c) Démontrer que $1 \in E_{\infty}$.
- 7. Démontrer que, si x est un élément de E_{∞} , alors l'intervalle $[x, +\infty[$ est inclus dans E_{∞} . Nous allons maintenant démontrer qu'il existe un nombre réel δ tel que l'intervalle $]-\infty, \delta[$ est inclus dans E_{0} et l'intervalle $[\delta, +\infty[$ est inclus dans E_{∞} .

On admet que $0 \in E_0$.

8. On définit deux suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ de la façon suivante. Tout d'abord, on pose $a_0=0$ et $b_0=1$. Puis, pour tout entier $n\geqslant 0$, on pose

$$a_{n+1} = \frac{a_n + b_n}{2}$$
 et $b_{n+1} = b_n$ si $\frac{a_n + b_n}{2} \in E_0$,

et on pose

$$a_{n+1} = a_n$$
 et $b_{n+1} = \frac{a_n + b_n}{2}$ sinon.

- a) Démontrer que les suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ sont convergentes et ont même limite.
- b) Soit δ la limite commune aux suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$. Démontrer que l'intervalle $]-\infty, \delta[$ est inclus dans E_0 et l'intervalle $]\delta, +\infty[$ est inclus dans E_∞ .
- **9.** On définit la suite $(v_n)_{n\geqslant 2}$ par $v_2=2$ et par la relation de récurrence, pour tout entier $n\geqslant 2$, $v_{n+1}=(n+1)^{v_n}$.

On définit la suite $(w_n)_{n\geqslant 2}$ par, pour tout entier $n\geqslant 2$ par $w_n=\ln^n(v_n)$ où on a posé $\ln^2=\ln\circ\ln$ et pour tout entier $n\geqslant 2$, $\ln^{n+1}=\ln\circ\ln^n$.

On admet que pour tout entier naturel n, l'ensemble de définition de \ln^n est un intervalle non majoré.

- a) Justifier que la suite $(w_n)_{n\geq 2}$ est bien définie.
- **b)** Monter que pour tout entier $n \ge 2$, $w_n \in E_0$.
- c) Démontrer que la suite $(w_n)_{n\geqslant 2}$ converge.
- 10. Démontrer que $\delta \in E_{\infty}$.