Devoir en temps libre 7

Pour le 2 décembre

Utiliser des copies doubles. Encadrer les résultats. Laisser une marge.

Exercice 1

Soit (G,*) un groupe. On note S_G l'ensemble des applications $f \in G^G$ bijectives. Pour tout $g \in G$, on considère l'application :

- 1. Montrer que, pour tout $g \in G$, l'application τ_g est un morphisme de groupes.
- **2.** Soit $g, g' \in G$.
 - a) Montrer que $\tau_g \circ \tau_{g'} = \tau_{g*g'}$.
 - b) Montrer que τ_g est bijective et déterminer son application réciproque.
- 3. On appelle ensemble des automorphismes intérieurs de G, noté $\mathrm{Int}(G)$, l'ensemble :

$$Int(G) = \{ \tau_g \mid g \in G \}.$$

Montrer que $\operatorname{Int}(G)$ est un sous-groupe de (S_G, \circ) .

4. On appelle centre du groupe G, noté Z(G), l'ensemble :

$$Z(G) = \{g \in G \mid \forall h \in G, g * h = h * g\}.$$

- a) Montrer que Z(G) est un sous-groupe de G.
- **b)** Expliciter τ_g si $g \in Z(G)$.

Exercice 2

On note $(u_n)_{n\in\mathbb{N}}$ la suite définie par récurrence par $u_0=1$ et, pour tout $n\in\mathbb{N}$,

$$u_{n+1} = u_n^2 + u_n.$$

- 1. Déterminer la nature de la suite $(u_n)_{n\in\mathbb{N}}$ et préciser, le cas échéant, sa limite.
- **2.** Pour tout $n \in \mathbb{N}$, on pose

$$v_n = \frac{1}{2^n} \ln u_n.$$

a) Prouver que pour tous $n, p \in \mathbb{N}$,

$$0 \leqslant v_{n+p+1} - v_{n+p} \leqslant \frac{1}{2^{n+p+1}} \ln \left(1 + \frac{1}{u_n} \right).$$

b) En déduire que pour tous $n, k \in \mathbb{N}$,

$$0 \leqslant v_{n+k+1} - v_n \leqslant \frac{1}{2^n} \ln \left(1 + \frac{1}{u_n} \right).$$

- c) En déduire la convergence de $(v_n)_{n\in\mathbb{N}}$ vers un réel, que l'on choisit d'écrire comme un logarithme, c'est-à-dire $\ln \alpha$ avec $\alpha > 0$.
- **3.** a) Montrer que, pour tout $n \in \mathbb{N}$,

$$u_n \leqslant \alpha^{2^n} \leqslant 1 + u_n$$
.

- **b)** En déduire la limite $\lim_{n\to+\infty} \frac{u_n}{\alpha^{2^n}}$.
- **4.** Pour tout $n \in \mathbb{N}$, on pose $\delta_n = \alpha^{2^n} u_n$.
 - a) Montrer que la suite $(\delta_n)_{n\in\mathbb{N}}$ est bornée et que, pour tout $n\in\mathbb{N}$,

$$\delta_n = \frac{1}{2} + \frac{\delta_{n+1} + \delta_n^2 - \delta_n}{2} \alpha^{-2^n}.$$

- **b)** En déduire que, pour tout $n \in \mathbb{N}$, $u_n = \lfloor \alpha^{2^n} \rfloor$.
- c) Montrer enfin que la suite $(\delta_n)_{n\in\mathbb{N}}$ est convergente et donner sa limite.

Exercice $3 \star$

Déterminer toutes les fonctions $f: \mathbb{R} \longleftrightarrow \mathbb{R}$ strictement croissantes telles que

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y).$$