

Calculez
$$\int_0^1 \frac{x^3}{\sqrt{x^2 + x + 1}} dx$$
 par changements de variable : $t = \sqrt{x^2 + x + 1} - x$ puis $t = 2.u - 1$.

Sachant
$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$
, donnez une base et la dimension de $\{M \mid A.M = M.A\}$ (au fait, quel est le seul format possible pour M ?).

Un théorème affirme : pour tout couple d'entiers (a, b) distincts, il existe une infinité d'entiers naturels n vérifiant a + b et b + n sont premiers entre eux.

Écrivez un script Python qui pour *a* et *b* donnés cherche une liste de cent entiers *n* vérifiant ceci.

Donnez le couple (a, b) avec a et bentre 1 et 1000 pour lequel le dernier terme de cette liste est le plus grand.

Sur quel domaine est elle définie ? Sur quel domaine est elle continue ? Sur quel domaine est elle dérivable ? $x \longmapsto \cos(\sqrt{x})$.

Mêmes questions avec $x \mapsto \sqrt{\cos(x)}$.

C	•	•	•	•	•	
						В
			С	С		
	A		В		C	
						D
]
A						
		D	D			_

Joël Martin (la Comtesse du Canard) à Paris:

Paris aux prestigieuses scènes est la capitale mondiale capitale du luxe. On y rencontre plein de titis qui rusent et bisent des copines à l'air cool. On voit plein de péniches à la Seine et plein de bus faciles à citer. On entend parfois soupirer des touristes subjugués par l'abîme dans la Tour : "Ah que j'aurais aimé connaître vos motivations, Eiffel !"

Et Joël Martin en Haute-Savoie (ah le goût de Mont-Blanc) :

Les amateurs de pentes collectionnent les faces, épatés par les faces et les pentes effilées. Une grimpeuse qui apprécie la Verte quand elle est jolie, et surtout la Verte enneigée, parcourt le mont sans craindre le vide. Une autre luge sous la Verte. Mais gare à l'excès de glisse quand se déchaîne le vent... détresse sur les faces!

Règle du jeu : sur chaque ligne, les lettres de A à D et une case transparente. Et au bout, l'indication de « qui on voit depuis ce bord ».

	A	C		A		
	Α	C	D		В	
D	D	В	C	Α		A
A C		Α	В	D	C	
C	С		Α	В	D	D
	В	D		C	Α	

Montrez que l'ensemble des matrices de spectre rationnel (les valeurs propres sont dans \mathbb{Q}) n'est stable ni par addition, ni par multiplication.

Il suffit de contre-exemples. Ce qu'on sait déjà, c'est que si les valeurs propres sont rationnelles, la trace et le déterminant (somme et produit des-dites valeurs propres) sont rationnels. Mais on n'a pas de réciproque (tout va dépendre du discriminant).

Par exemple $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ et $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ont toutes deux un spectre rationnel (et même entier) : $\{1, -1\}$ pour chacune.

Leur somme $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ a pour spectre $\{\sqrt{2}, -\sqrt{2}\}$.

D'autres exemples sont possibles. Il suffit d'essayer un peu au hasard.

De même, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ et $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Elles ont pour spectres $\{-1, 1\}$ pour l'une et l'autre. Leur produit $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ a pour spectre $\{i, -i\}$, même pas réel. On reconnaît une rotation d'angle $\pi/2$.

Donnez une base et la dimension de l'espace vectoriel des solutions de $y''_t + 3.y'_t + 2.y_t = 0$ (d'inconnue y fonction de t) dont la moyenne sur [0, 1], est nulle a (après avoir montré que c'est bien un espace vectoriel) Donnez une base et la dimension de l'espace vectoriel des solutions de $y_t^{(4)} - 3.y_t^{(3)} + 3.y''_t - 3.y'_t + 2.y_t = 0$ (d'inconnue y fonction de t) dont la moyenne sur $[0, \pi]$, est nulle.

Donnez une base et la dimension de l'espace vectoriel des solutions de $y_t^{(4)} - 3.y_t^{(3)} + 3.y''_t - 3.y_t' + 2.y_t = 0$ (d'inconnue y fonction de t) dont la moyenne sur $[0, 2.\pi]$, est nulle.

a. c'est à dire $\int_0^1 y_t dt = 0$, des fois il faut tout vous dire sinon vous partez avec vos propres définitions incohérentes

On passe par la notion de sous-espace vectoriel de $C^{\infty}(\mathbb{R}, \mathbb{R})$ pour prouver qu'on a bien des espaces vectoriel.

La fonction nulle est solution de l'équation homogène. Et son intégrale sur tout segment est nulle, y compris sur [0, 1].

Si f et g sont dans l'ensemble, leur somme vérifie encore l'équation différentielle et on a $\int_0^1 (f(t) + g(t)) dt = 0 + 0$ par linéarité de l'intégrale.

Cela dit, on va plus vite en résolvant déjà l'équation dont les solutions sont les fonctions de la forme $t \mapsto a.e^{-t} + b.e^{-2.t}$ (résultat direct du cours) avec a et b décrivant \mathbb{R} (espace vectoriel de dimension 2 pour l'instant).

La contrainte $\int_0^1 (a.e^{-t} + b.e^{-2.t}).dt = 0$ impose une relation entre a et $b: b = -\frac{2}{1+e}.a$.

Finalement, on trouve les multiples de $t \longmapsto (1+e).e^{-t} + 2.e^{-2.t}$.

L'espace est de dimension 1.

Les solutions de $y_t^{(4)} - 3.y_t^{(3)} + 3.y''_t - 3.y_t' + 2.y_t = 0$ sont des combinaisons de $t \mapsto e^{2.t} | t \mapsto e^{t}$ $t \mapsto e^{-i.t} | t \mapsto e^{-i.t} |$

Ou si vous préférez des fonctions de la forme $t \mapsto a.e^t + b.e^{-t} + c.\cos(t) + d.\sin(t)$

Mais ensuite, la condition « moyenne nulle » sur $[0, \pi]$, que donne-t-elle ?

$$\int_0^{\pi} (a.e^t + b.e^{-t} + c.\cos(t) + d.\sin(t)).dt = 0$$

Ceci devient $2.a.(e^{\pi}-1) + b.(e^{2.\pi}-1) + d = 0.$

Aucune condition sur c. Et sinon, on exprime d à l'aide des deux autres.

La dimension est 3.

Avec la même équation, mais la moyenne sur $[0, 2.\pi]$, qu'est ce qui change?

Cette fois, même *d* s'en va.

La condition est juste $2.a.(e^{2.\pi} - 1) + b.(e^{4.\pi} - 1) = 0.$

On trouve a à l'aide de b.

Les solutions forment un espace de dimension 3.

Une base est faite de (cos, sin, $t \mapsto (1 - e^{4.\pi}) \cdot e^t + (2 \cdot e^{2.\pi} - 2) \cdot e^{2.t}$).

Sans calculatrice (mais avec un papier) : qui est le plus grand :
$$2.\binom{25}{12}$$
 ou $\binom{27}{11}$?

On calcule chacun et on le décompose en produit de facteurs premiers :

Contractile character of the decompose on produit de facteurs prefiders:
$$2.\binom{25}{12} = 2.\frac{25.24.23.22.21.20.19.18.17.16.15.14}{1.2.3.4.5.6.7.8.9.10.11.12}$$

$$2.\binom{25}{12} = 2.\frac{(5^2).(2^3.3).(23).(2.11).(3.7).(2^2.5).19.(2.3^2).(17).(2^4).(3.5).(2.7)}{(1).(2).(3).(2^2).(5).(2.3).(7).(2^3).(3^2).(2.5).(11).(2^2.3)}$$

$$2.\binom{25}{12} = 2.\frac{2^{12}.3^5.5^4.7^2.11.13.17.19}{2^{10}.3^5.5^2.7.11}$$

$$2.\binom{25}{12} = 2^3.5^2.7.17.19.23$$

De même
$$\binom{27}{11} = 3^3.5.13.17.19.23.$$

Il suffit ensuité de calculer le quotient : $2^3.5^2.7.17.19.23 - 3^3.5.13.17.19.23 = (2^3.5.7 - 3^3.13).5.17.19.23$.

280 face à 351 1 c'est $\binom{27}{11}$ le plus grand.

On veut étudier les variations de
$$x \longmapsto \frac{\ln(x^2+1)}{x+1}$$
 sur $]-1$, $+\infty[$ (notée f'). Montrez que f' est du signe de $x \longmapsto \frac{2 \cdot x^2 + 2 \cdot x}{x^2+1} - \ln(1+x^2)$ (notée g). Montrez que g' est négative sur $]-1$, $1[$ et positive sur $]1$, $+\infty[$.

Déduisez que f est décroissante, croissante puis décroissante.

Bon, le domaine a un trou en -1.

On dérive :
$$f' = x \longmapsto \frac{2.x}{(x^2 + 1).(x + 1)} - \frac{\ln(x^2 + 1)}{(x + 1)^2}$$
.
On compacte en $f' = x \longmapsto \frac{\frac{2.x.(x + 1)}{x^2 + 1}}{(x + 1)^2} - \frac{\ln(x^2 + 1)}{(x + 1)^2}$.

Le signe est bien celui de $g = x \mapsto \frac{2 \cdot x \cdot (x+1)}{x^2+1} - \ln(x^2+1)$ (en ne se préoccupant pas de $(x+1)^2$.

Mais cette fonction n'est pas très pratique. On va la dériver à son tour, cette fois sur R.

Cette fois :
$$g'(x) = \frac{4 \cdot x + 2}{x^2 + 1} - \frac{4 \cdot x^2 \cdot (x+1)}{(x^2 + 1)^2} - \frac{2 \cdot x}{x^2 + 1}$$
 pour tout x .

On réduit au dénominateur commun :
$$g'(x) = \frac{(4.x+2).(x^2+1) - 4.x^2.(x+1) - 2.x.(x^2+1)}{(x^2+1)^2}$$

On étudie en détail le numérateur (sans facteur 2) $(2.x + 1).(x^2)$ $(x+1)^2 \cdot (1-x)$.

On a donc le signe de g'(x), par intervalles.

Puis les variations de *g* et ses limites aux bornes.

	$]-\infty$, $-1[$	-1] – 1, 1[1]1, +∞[
signe de $g'(x)$	+		+		_
variations de <i>g</i>	7		7		7
avec limites	-∞ > ¬-ln(2)		$-\ln(2)$ $\nearrow 2-\ln(2)$		2-ln(2)
signe de $g(x)$	négatif		change de signe		change de signe

Par sens de variations, g reste de signe constant avant -1.

Puis, par continuité, g change de signe entre -1 et 1. On trouve que g s'annule en 0 d'ailleurs.

^{1.} là, c'est bon, ça se calcule sur un bout de papier

Ensuite, par continuité encore, g s'annule entre 1 et $+\infty$. La continuité donne au moins deux racines.

Par sens de variations, *g* n'a que ces deux racines.

Rappel capital:

T.V.I.	signe de f'
continuité	monotonie
au moins une solution	au plus une solution
surjectivité	injectivité

Je vous rappelle que vous devez séparer dans votre esprit ainsi en deux tableaux.

En terminale on vous a tout mis en un. Fort mauvaise idée.

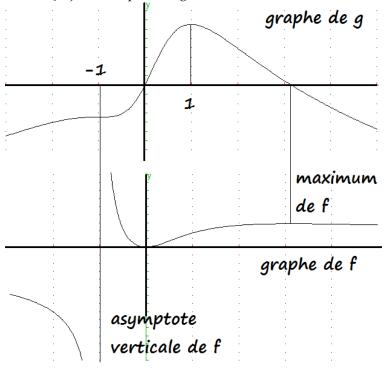
Ceci vous conduit à appliquer des phrases toutes faites, sans comprendre ce qui sert à quoi.

Et vous finissez par dire « par le T.V.I., elle ne s'annule qu'une fois ». Et là, c'est TOTALEMENT CON. Et si vous passez pour un con, vous repasserez le concours un an plus tard.

Donc, tout sauf des formules toutes prêtes.

On réfléchit en parlant, et on prend conscience du prix à payer pour toute affirmation.

Ou alors on change de filière. J'ai connu des gens qui ont quand même fait une belle carrière en n'ayant rien compris aux maths et aux sciences. Ce sera peut être vous si vous persistez en disant « j'ai toujours fait comme ça, je ne vais pas changer ».



ette limite est égale à $f(a)$. cette limite est égale à $f(a)$. égale à la limite à gauche.
égale à la limite à gauche.
e limite est égale à $f(a)$.
able à droite et dérivable à gauche en <i>a</i> , alors pourquoi elle
e en a , et cette limite est égale à $f'_d(a)$.
, 5 %
he en a , et cette limite est égale à $f'_g(a)$.
ette egale a la lillitte a gauctie.
orcément de limite en a. La valeur absolue est un bon contre-
ble à droite et dérivable à gauche en <i>a</i> , alors elle est continue
-
elle est continue à droite.
s elle est continue à gauche.
n. Iorphe à un ${\mathcal E}$ tracé par Jonas K ? Beh, euh
1
érivée $x \longmapsto \frac{1}{ x }$?
$-\infty$, 0[et sur]0, $+\infty$ [a pour dérivée $x \mapsto \frac{1}{x}$ sur les deux.
rivez $x \mapsto \ln(-x)$, vous obtenez $x \mapsto \frac{-1}{-x}$.
on paire dérivable comme $x \mapsto \ln(x)$ est impaire.
se dérive en $x \mapsto \frac{1}{x}$, il y a deux arguments pour cela.
et seulement si $x \mapsto f(x+a)$ est dérivable en 0.
f(x) = f(x)
$f(x)$ et dans l'autre $h \longmapsto f(a+h)$.
$f(x)$ et dans l'autre $h \mapsto f(a+h)$. de dérivée $f'(a)$, alors $x \mapsto f(-x)$ est dérivable en $-a$ de
$f(x)$ et dans l'autre $h \longmapsto f(a+h)$.
$f(x)$ et dans l'autre $h \mapsto f(a+h)$. de dérivée $f'(a)$, alors $x \mapsto f(-x)$ est dérivable en $-a$ de et. On a symétrisé par rapport à l'axe Oy . Les coefficients e signe.
$f(x)$ et dans l'autre $h \mapsto f(a+h)$. de dérivée $f'(a)$, alors $x \mapsto f(-x)$ est dérivable en $-a$ de et. On a symétrisé par rapport à l'axe Oy . Les coefficients e signe. Le passe.
$f(x)$ et dans l'autre $h \mapsto f(a+h)$. de dérivée $f'(a)$, alors $x \mapsto f(-x)$ est dérivable en $-a$ de et. On a symétrisé par rapport à l'axe Oy . Les coefficients es signe. Le passe. est dérivable en a alors f est dérivable en a .
$f(x)$ et dans l'autre $h \mapsto f(a+h)$. de dérivée $f'(a)$, alors $x \mapsto f(-x)$ est dérivable en $-a$ de et. On a symétrisé par rapport à l'axe Oy . Les coefficients e signe. Le passe.
$f(x)$ et dans l'autre $h \mapsto f(a+h)$. de dérivée $f'(a)$, alors $x \mapsto f(-x)$ est dérivable en $-a$ de et. On a symétrisé par rapport à l'axe Oy . Les coefficients esigne. Le passe. est dérivable en a alors f est dérivable en a . ication tangente, qui est dérivable en tout point, y compris
$f(x)$ et dans l'autre $h \mapsto f(a+h)$. de dérivée $f'(a)$, alors $x \mapsto f(-x)$ est dérivable en $-a$ de et. On a symétrisé par rapport à l'axe Oy . Les coefficients e signe. e passe. est dérivable en a alors f est dérivable en a . ication tangente, qui est dérivable en tout point, y compriserivable en a alors f est dérivable en a .
$f(x)$ et dans l'autre $h \mapsto f(a+h)$. de dérivée $f'(a)$, alors $x \mapsto f(-x)$ est dérivable en $-a$ de et. On a symétrisé par rapport à l'axe Oy . Les coefficients e signe. le passe. est dérivable en a alors f est dérivable en a . ication tangente, qui est dérivable en tout point, y compriserivable en a alors f est dérivable en a . er ? Par la racine carrée ? Non dérivable en 0 .
$f(x)$ et dans l'autre $h \mapsto f(a+h)$. de dérivée $f'(a)$, alors $x \mapsto f(-x)$ est dérivable en $-a$ de et. On a symétrisé par rapport à l'axe Oy . Les coefficients esigne. Les passes et dérivable en a alors f est dérivable en a . ication tangente, qui est dérivable en tout point, y compriserivable en a alors f est dérivable en a .
$f(x)$ et dans l'autre $h \mapsto f(a+h)$. de dérivée $f'(a)$, alors $x \mapsto f(-x)$ est dérivable en $-a$ de et. On a symétrisé par rapport à l'axe Oy . Les coefficients e signe. e passe. est dérivable en a alors f est dérivable en a . ication tangente, qui est dérivable en tout point, y compriserivable en a alors f est dérivable en a . er? Par la racine carrée? Non dérivable en a . er? Par la racine carrée? Non dérivable en a . er? Lievez la au carré, elle est dérivable partout car n'est dérivable nulle part car déjà continue nulle part. en a 0, mais son carré l'est.
$f(x)$ et dans l'autre $h \mapsto f(a+h)$. de dérivée $f'(a)$, alors $x \mapsto f(-x)$ est dérivable en $-a$ de et. On a symétrisé par rapport à l'axe Oy . Les coefficients e signe. Les passes. Lest dérivable en a alors f est dérivable en a . Les coefficients derivable en a alors f est dérivable en f en f en f en f est dérivable en f en f en f est dérivable partout car f en f en f en f en f est dérivable nulle part car déjà continue nulle part. Les f en f en f en f est nulle en f en f est nulle en f en f en f est nulle en f est nulle en f est nulle en f est nulle en f en f est nulle en f
$f(x)$ et dans l'autre $h \mapsto f(a+h)$. de dérivée $f'(a)$, alors $x \mapsto f(-x)$ est dérivable en $-a$ de et. On a symétrisé par rapport à l'axe Oy . Les coefficients e signe. e passe. est dérivable en a alors f est dérivable en a . ication tangente, qui est dérivable en tout point, y compris erivable en a alors f est dérivable en a . er? Par la racine carrée? Non dérivable en a . er? Par la racine carrée? Non dérivable en a . er? Par la racine carrée? Non dérivable en a . er? Par la racine carrée? Non dérivable en a .
$f(x)$ et dans l'autre $h \longmapsto f(a+h)$.

	D	В		D					С		В				С		Α			
	D	В	A		С		C		С	A	В	D		В		В	A	С	D	D
A	Α	С	В	D		D	В	В	Α	С	D		D		С		D	A	В	
D		D	С	A	В			C	В	D		A	Α		Α	С	В	D		D
В	В		D	С	A	Α	D	D		В	A	С			D	Α		В	С	C
	С	A		В	D			A	D		С	В			В	D	С		A	
	D								В						В					<u></u>

Tiens, et un programme Python qui vérifie que pour une matrice donnée sous forme de liste de listes comme [[D,B,A,O,C], [A, C, B, D,O], [O,D,C,A,B], [B, O, D, C, A], [C, A, O, B, D]]² pour la première que chaque ligne est chaque colonne est bien formée des cinq symboles?

Et même qui ensuite vous dit même quelle est la première lettre (autre que O) visible depuis chaque extrémité de ligne et/ou de colonne.

Paris aux prestigieuses **scè**nes est la capitale mondiale capitale du **lu**xe. On y rencontre plein de **tit**is qui ru**s**ent et bi**s**ent des copines à l'air cool. On voit plein de péni**ches** à la **S**eine et plein de b**us** faciles à c**it**er. On entend parfois soupirer des touristes subjugués par l'abî**m**e dans la **T**our : "Ah que j'aurais aimé connaître vos **motiv**ations, Ei**ffel**!"

Et Joël Martin en Haute-Savoie (ah le **g**oût de Mont-**B**lanc) :

Les amateurs de *p*entes collectionnent les *f*aces, *é* patés par les *faces* et les *p*entes effilées. Une grimpeuse qui apprécie la Ver*t*e quand elle est *j* olie, et surtout la Ver*t*e ennei*g*ée, parcourt le mont sans craindre le vi*de*. Une autre lu*g*e sous la Ver*t*e. Mais gare à l'excès de *gl*isse quand se déchaîne le *v*ent... détr*e*sse sur les *faces* !