2025

LYCEE CHARLEMAGNE Mercredi 11 septembre $\mathcal{M}.\mathcal{P}.\mathcal{S}.\mathcal{I}.2$

2024

Pour x et a positifs (a différent de 1), on définit $\log_a(x) = y$ par $a^y = x$. Exprimez $\log_a(x)$ à l'aide du logarithme naturel.

 $\diamond 0 \diamond$ Montrez : $\log_4(x^2) = \log_2(x)$.

Résolvez $(\log_2(x) + 3).(\log_3(x) + 2) > 0$ d'inconnue réelle x.

A la calculatrice, $\log_{10}(2) \simeq 0.3010$ à 10^{-4} près. et $\frac{28}{93} \simeq 0.3010$ à 10^{-4} près. Le prof Dephi Zack déduit :

 $\log_{10}(2) = \frac{28}{93}$. Montrez qu'il a tort. $\boxed{^{2\,\mathrm{pt.}}}$

Si a est une suite réelle, on définit la suite $\Delta(a)$ par $\forall n$, $(\Delta(a))_n = a_{n+1} - a_n$. Retrouvez les coefficients : $\forall n$, $(\Delta(\Delta(\Delta(a))))_n = \dots a_{n+1} + \dots a_{n+3} + \dots a_{n+2} + \dots a_{n+1} + \dots a_n$. On pose $a = n \longmapsto 3^n$. Calculez $\Delta(\Delta(\Delta(\Delta(\Delta(\Delta(\Delta(a)))))))$.

Résolvez l'équation $x^4 - 2.x^2.\cos(\theta) + 1 = 0$ d'inconnue complexe x (et de paramètre θ).

Montrez que si x est différent de -1 et 1, l'équation $x^2 - 2.x.\cos(\theta) + 1 = 0$ d'inconnue réelle θ n'a pas de solution.

Pour calculer $\int_{t=a}^{b} e^{t} \cdot (t+1) \cdot \ln(t) \cdot dt$ (notée *I*), l'élève propose d'intégrer par parties en posant $u(t) = \ln(t)$ et $v'(t) = (t+1) \cdot e^{t}$. Et je crois que c'est une bonne idée. Alors faites le. Mais comment allez vous trouver v? $3 \cdot pt$.

 $\bigcirc 3 \bigcirc \bigcirc$ Calculez $\int_0^x e^{x-t} \cdot (2.t+3) \cdot dt$ pour tout réel $x \cdot \boxed{2pt}$

Montrez par récurrence sur n que si P_n est un polynôme de degré n alors $x \mapsto \int_0^{x-t} .P(t).dt$ est combinaison d'une exponentielle et d'un polynôme en x de degré n. 1_{2pt}

... Consider the following 203 sets of 10 elements each: {1, 2, 3, · · · , 10}, {11, 12, 13, · · · , 20}, {21, 22, 23, · · · , 30}, {1991, 1992, 1993, · · · , 2000}, {2001, 2002, 2003, · · · , 2010}, {2011, 2012, 2003, · · · , 2020}, {2021, 2022, 2023, · · · , 2030},

How many of these sets contain exactly two multiples of 6? [3pt] (answer or programm)

Le trinôme de colles est formé de Alexandre, Bilel, Clara et Dounia (on a ajouté une PCSI pour avoir A, B, C et D et pour que le nombre de parties soit plus grand). Indiquez les 16 sous-ensembles qu'on peut voir arriver en colle suivant le nombre d'absents (de $\{A, B, C, D\}$ à \emptyset en passant par $\{B, D\}$ et autres $\{C, B, D\}$).

Résolvez $X \cap \{A, B, C\} = \{A, C\}$ d'inconnue X dans l'ensemble P des seize parties ci dessus.

Résolvez $X \cup \{B,C\} = \{A,B,C\}$ d'inconnue X dans l'ensemble P des seize parties ci dessus.

Résolvez $X \cap \{A, B, C\} = X \cup \{A, C\}$ d'inconnue X dans l'ensemble P des seize parties ci dessus.

LYCEE CHARLEMAGNE M.P.S.I.2

2024

IS00

2025

LYCEE CHARLEMAGNE
Mercredi 11 septembre
M.P.S.I.2

IS00 CORRECTION

IS00 Logarithme de base a.

Pour a,x et y donnés, on part de $a^y = x$, on passe au logarithme (équivalence) : $\ln(a^y) = \ln(x)$. On sort y devant : y. $\ln(a) = \ln(x)$ et on divise par $\ln(a)$ qui est justement non nul. On a la formule demandée.

On commence par la question gentille

$$\log_4(x) = \frac{\ln(x^2)}{\ln(4)} = \frac{2 \cdot \ln(x)}{\ln(2^2)} = \frac{2 \cdot \ln(x)}{2 \cdot \ln(2)} = \frac{\ln(x)}{\ln(2)} = \log_2(x)$$

On continue avec l'inéquation dans laquelle on réduit au dénominateur commun

$$E \Leftrightarrow (\log_2(x) + 3).(\log_3(x) + 2) > 0$$

$$E \Leftrightarrow \left(\frac{\ln(x) + 3.\ln(2)}{\ln(2)}\right).\left(\frac{\ln(x) + 2.\ln(3)}{\ln(3)}\right) > 0$$

Comme les deux dénominateurs sont de même signe, tout se réduit à ln(x) + 3. ln(2) et ln(x) + 2. ln(3) sont de même signe.

On regarde quand chacun change de signe : $\ln(x) + 3 \cdot \ln(2) > 0 \Leftrightarrow \ln(x) > -3 \cdot \ln(2) = \ln(2^{-3})$. C'est en $\frac{1}{8}$ et $\frac{1}{9}$ que tout va se passer.

On fait un grand classique du cours du lycée : un tableau de signes :

x	$]0, \frac{1}{9}[$	$\frac{1}{9}$	$\left]\frac{1}{9},\frac{1}{8}\right[$	$\frac{1}{8}$	$\left[\begin{array}{c} \frac{1}{8}, +\infty \right[$	$S_x = \left[0, \frac{1}{9} \left[\bigcup \right] \frac{1}{8}, +\infty \right]$
$\ln(x) + 3.\ln(2)$	négatif		négatif	0	positif	1, 9[0]8, [
$\ln(x) + 2.\ln(3)$	négatif	0	positif		positif	
produit	positif	0	négatif	0	positif	

On termine avec l'affirmation idiote. En effet, supposons à tort : $\frac{\ln(2)}{\ln(10)} = \frac{28}{93}$; on va chercher une contradiction.

On effectue un produit en croix : $93. \ln(2) = 28. \ln(10)$ qui donne même $\ln(2^{93}) = \ln(10^{28})$. On efface les logarithmes par un passage aux exponentielles

$$2^{93} = 10^{28}$$

On simplifie par $2^{28}: 2^{65} = 5^{28}$.

Mais le membre de droite est un entier impair. Et le membre de gauche est un entier pair. C'est contradictoire.

En erreur relative, c'est très très satisfaisant : un pour cent.

IS00 Opérateur sur les suites.

On applique Δ autant de fois qu'il faut. Et on nomme les suites construites pas à pas pour simplifier la recherche:

	A		1 1 1			
а		a_n				
$b = \Delta(a)$	a_{n+1}	_	a_n			
$b = \Delta(u)$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n			
$c = \Delta(\Delta(a)) = \Delta(b)$	$(a_{n+2} - a_{n+1})$	_	$(a_{n+1}-a_n)$			
$\mathcal{C} = \Delta(\Delta(u)) = \Delta(v)$						
$d = \Delta(\Delta(\Delta(a))) = \Delta(c)$	$a_{n+3} - 2.a_{n++2} + a_{n+1}$		$a_{n+2} - 2.a_{n+1} + a_n$			
$u = \Delta(\Delta(\Delta(u))) = \Delta(c)$		$3.a_{n+2} + 3$	$a_{n+1}-a_n$			
$e = \Delta(\Delta(\Delta(\Delta(a)))) = \Delta(d)$	$a_{n+4} - 3.a_{n+3} + 3.a_{n+2} - a_{n+1}$		$a_{n+3} - 3.a_{n+2} + 3.a_{n+1} - a_n$			
$c = \Delta(\Delta(\Delta(\Delta(u)))) = \Delta(u)$	$a_{n+4} - 4.a_{n-1}$	$+3 + 6.a_{n+1}$	$a_{2}-4.a_{n+1}+a_{n}$			

On peut donc compléter ce qui nous est demandé, avec des coefficients binomiaux.

Pour la suite $n \mapsto 3^n$, on peut constater qu l'opérateur Δ ne fait pas grand chose.

En effet, pour tout n, on a

$$(\Delta(a))_n = 3^{n+1} - 3^n = (3-1).3^n = 2.3^n$$

Et si on recommence?

$$(\Delta(\Delta(a)))_n = 2.3^{n+1} - 2.3^n = 2.(3-1).3^n = 4.3^n$$

En fait, à chaque fois qu'on applique Δ , on multiplie juste par 2. On a donc juste à les compter, et à se placer au bon étage

$$\Delta(\Delta(\Delta(\Delta(\Delta(\Delta(\Delta(\Delta(\Delta(a))))))))) = (n \longmapsto 2^{9}.3^{n})$$

ISOO Second degré et cosinus.

On connaît par le cours les racines de l'équation $c^2 - 2.c.\cos(\theta) + 1 = 0$ d'inconnue complexe c (c'est du cours)

$$S_c = \{e^{i.\theta}, e^{-i.\theta}\}$$

Pour l'équation $x^4 - 2 \cdot x^2 \cdot \cos(\theta) + 1 = 0$ d'inconnue complexe x, le changement de variable nous donne $x^2 = e^{i \cdot \theta}$ ou $x^2 = e^{-i \cdot \theta}$.

L'équation $x^2 = e^{i.\theta}$ admet une solution évidente : $x = e^{i.\theta/2}$.

Mais il en faut une autre. Laquelle ? Mais $x = -e^{i.\theta/2}$.

argument:
$$x = e^{i.\theta} \Leftrightarrow (x^2 - (e^{i.\theta/2})^2 = 0) \Leftrightarrow (x - e^{i.\theta/2}).(x + e^{i.\theta/2}) = 0$$

Finalement, on a nos quatre solutions, puis un ensemble

$$\{e^{i.\theta/2}, -e^{i.\theta/2}, e^{-i.\theta/2}, -e^{-i.\theta/2}\}$$

Et dans l'autre sens ? On a deux approches possibles.

Déjà, c'est vrai que pour x égal à 1, l'équation devient $1-2.\cos(\theta)+1=0$ et tous les θ multiples de $2.\pi$ sont solutions.

C'est vrai aussi que pour x égal à -1, l'équation devient 1+2. $\cos(\theta)+1=0$ et tous les θ multiples impairs de π sont solutions.

Mais ce n'est pas la question posée.

On se donne un réel x et on veut résoudre $x^2 - 2.x.\cos(\theta) + 1 = 0$.

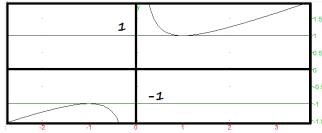
On se dit que si on a une solution θ alors l'égalité donne justement $x^2 - 2.x.\cos(\theta) + 1 = 0$ puis $x = e^{i.\theta}$. Et x est complexe mais non réel.

Sinon, on peut aussi résoudre explicitement $cos(\theta) = \frac{x^2 + 1}{2.x}$.

Et le réel $\frac{x^2+1}{2.x}$ est plus grand que 1 ou plus petit que -1 .

Ce ne peut donc pas être un cosinus.

Il suffit de tracer le tableau de variations de $x \mapsto \frac{x^2+1}{2.x}$ (de dérivée $x \mapsto \frac{x^2-1}{2.x^2}$).



Jamais le réel $\frac{x^2+1}{x}$ ne pourra être entre -1 et 1 . Il ne peut donc pas être le cosinus d'un quelconque θ .

IS00 Intégration par parties et polynômes.

On se fixe x et on a des fonctions continues de t qui sont de classe suffisante pour intégrer par parties.

$\int_{-\infty}^{x} e^{x-t} (2 + \pm 3) dt$	$t \longmapsto e^{x-t}$	\leftarrow	$t \longmapsto -e^{x-t}$	$\begin{bmatrix} x^{x-t} & (2t+3) \end{bmatrix}^{t=x} + \int_{-\infty}^{x} e^{x-t} 2 dt$
$\int_0^{\infty} e^{-x} \cdot (2xt+3) \cdot dt$	$t \longmapsto 2.t + 3$	\hookrightarrow	$t \longmapsto 2$	$\begin{bmatrix} -e & .(2.t+3) \end{bmatrix}_{t=0} + \int_{t=0}^{e} e & .2.ut$

Le terme crochet donne $-e^0.(2.x+3) + e^x.(2..0+3)$ et l'autre terme se calcule en $\left[-2.e^{x-t}\right]_{t=0}^x$.

On compacte :
$$\int_0^x e^{x-t} \cdot (2.t+3) \cdot dt = 5.e^x - 2.x - 5$$

Pour tout n, on note P_n la propriété « pour tout polynôme de degré n l'intégrale $x \mapsto \int_0^x P_n(t).e^{x-t}.dt$ est la somme d'un polynôme et d'une exponentielle.

Au rang 0, un polynôme de degré 0, c'est une constante.

On explicite
$$x \longmapsto \int_0^x e^{x-t} \cdot a \cdot dt$$
 et on trouve $x \longmapsto a \cdot e^x - a$.
On a une exponentielle : $x \longmapsto a \cdot e^x$ et un polynôme : $x \longmapsto a$.

Dans notre exemple, on avait aussi une exponentielle $x \mapsto 5.e^x$ et un polynôme $x \mapsto -2.x - 5.e^x$

On se donne un entier naturel n et on suppose la propriété vraie au rang n (sans savoir expliciter le polynôme et l'exponentielle).

On veut l'établir au rang n + 1. On se donne donc un polynôme de degré n + 1 qu'on va noter naturellement P_{n+1} . On calcule alors par parties car tout est C^1

$$\int_{0}^{x} e^{x-t} \cdot P_{n+1}(t) \cdot dt \quad \frac{t \longmapsto e^{x-t}}{t \longmapsto P_{n+1}(t)} \quad \Leftrightarrow \quad t \longmapsto -e^{x-t} \\
\text{Le crochet donne } e^{0} \cdot P_{n+1}(x) + e^{x} \cdot P_{n+1}(0).$$

On a bien un polynôme en x. Et une exponentielle car $P_{n+1}(0)$ est juste un réel.

D'autre part, P'_{n+1} est un polynôme de degré n en tant que dérivée d'un polynôme de degré n+1.

On peut lui appliquer l'hypothèse de récurrence et trouver une forme $x \longmapsto \beta . e^x + Q_n(x)$ avec β un réel et Q_n un polynôme.

On somme et on a bien $x \mapsto \lambda e^x + R_n(x)$ avec $\lambda = \beta + P_{n+1}(x)$ et $R_n = P_{n+1} + Q_n$.

La propriété est initialisée et héréditaire, elle est donc vraie pour tout n.

Le résultat n'explicite pas totalement le réel et le polynôme en fonction de P_n , mais l'énoncé ne le demandait pas.

IS00 L'autre intégration par parties.

Une fois les bornes fixées l'intégrale existe. Mais comme il y a trois termes, comment découper?

			•	
$\int_{a}^{b} e^{t}.(t+1).\ln(t).dt$	$t \longmapsto (t+1).e^t$	\leftarrow	$t \longmapsto t.e^t$	$\begin{bmatrix} t & a^t & \mathbf{ln}(t) \end{bmatrix}^{t=x} + \int_0^b t & a^t & \mathbf{l} dt \end{bmatrix}$
$\int_{t=a} e^{t} \cdot (t+1) \cdot \ln(t) \cdot dt$	$t \longmapsto \ln(t)$	\hookrightarrow	$t\longmapsto rac{1}{t}$	$\left[t.e^{\iota}.\ln(t)\right]_{t=0} + \int_{a} t.e^{\iota}.\frac{1}{t}.dt$

Le crochet s'évalue bien, et l'intégrale de compensation vaut exactement $[e^t]_{t=a}^b$.

Mais au fait, comment a-t-on trouvé une primitive de $t \longmapsto (t+1).e^t$?

Moi je peux dire « on a essayé $t \mapsto t.e^t$ et ça a marché ».

Mais ce n'est pas satisfaisant. Il faut pouvoir la trouver sans illumination.

$$\int (t+1) \cdot e^t \cdot dt = \left[(t+1) \cdot e^t \right] - \int e^t \cdot dt = \left[(t+1) \cdot e^t \right] - \left[e^t \right] = \left[t \cdot e^t \right]$$

On a donc prouvé $\int_a^b (t+1) \cdot \ln(t) \cdot e^t \cdot dt = [t \cdot \ln(t) \cdot e^t - e^t]_a^b$

On a effectivement seize sous-ensembles possibles, qu'on peut classer de différentes façons :

\bigcirc									
$\{A\}$	{ <i>B</i> }	{ <i>C</i> }	$\{D\}$						
$\{A,B\}$	{ <i>A</i> , <i>C</i> }	$\{A,D\}$	{ <i>B</i> , <i>C</i> }	{ <i>B</i> , <i>D</i> }	$\{C,D\}$				
$\{B,C,D\}$	$\{A,C,D\}$	$\{A,B,D\}$	$\{A,B,C\}$						
$\{A,B,C,D\}$									

Avez vous vu le rôle de
$$\binom{4}{0}+\binom{4}{1}+\binom{4}{2}+\binom{4}{3}+\binom{4}{4}=16$$
?

Pour les équations, on peut tester les seize ensembles à chaque fois et ne garder que ceux qui conviennent. On peut aussi raisonner un peu avec des dessins.

$X \cap \{A,B,C\} = \{A,C\}$	$S = \{ \{A,C\},$	{ <i>A</i> , <i>C</i> , <i>D</i> }	}					
X doit contenir A et C, mais pas B. Pour D, qu'importe.								
$X \cup \{B,C\} = \{A,B,C\}$	$S = \{ (A),$	$\{A,B\}$	<i>{A,C} </i>	$\{A,B,C\}$	}			
X doit apporter A , mais pas D . Et pour B et C on s'en moque.								
$X \cap \{A, B, C\} = X \cup \{A, C\}$	$S = \{ \{A,C\},$	$\{A,B,C\}$	}					
X ne peut pas contenir D . X doit contenir A et C .								

Pour la dernière équation, on teste un par un les seize ensembles.

Mais sinon, $X \cap \{A, B, C\}$ a au maximum trois éléments, tandis que $X \cup \{A, B\}$ en a au moins deux.

IS00 Deux cent trois ensembles de longueur 10.

La réponse : il y en a 135.

L'argument : on regarde les premiers. Et on regarde la périodicité du phénomène. Et avec un programme ?

 LYCEE CHARLEMAGNE
 2024
 2025

 M.P.S.I.2
 IS00
 33- points