LYCEE CHARLEMAGNE Mercredi 15 janvier $\mathcal{M}.\mathcal{P}.\mathcal{S}.\mathcal{I}.2$

2024

2025

IS14

Dans le développement de $(a+b+c)^7$, il y a des termes avec coefficient 105, quels sont ils ? Combien y en a-t-il ? 2pt Et sinon, quel est le plus gros coefficient ? 2pt

Calculez $\begin{vmatrix} a & b \\ b & b \end{vmatrix}$, $\begin{vmatrix} a & b & c \\ b & b & c \\ c & c & c \end{vmatrix}$ et $\begin{vmatrix} a & b & c & d \\ b & b & c & d \\ c & c & c & d \\ c & c & c & d \\ d & d & d & d \end{vmatrix}$ sous forme factorisée (rappel : le déterminant est invadration)

riant par $L_i \leftarrow L_i - \alpha.L_j$ et on peut développer par rapport à une colonne/ligne).

 \bigcirc Calculez la comatrice (matrice des neuf cofacteurs pondérés) de la seconde matrice de la liste. \bigcirc 2 pt.

on est en 210 bordel!). 2 pt.

Résolvez $\det(A.B) = 8$ d'inconnue réelle x avec $A = \begin{pmatrix} 1 & x & 2 \\ 1 & 3 & 1 \\ 2 & 3 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 1 \\ x & 1 & 0 \end{pmatrix}$.

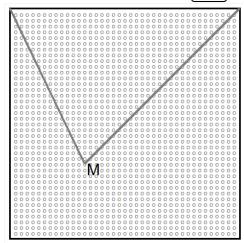
 φ est une application continue, on pose $f = x \longmapsto \int_0^x t.e^t.\varphi(x-t).dt$. On veut montrer que f vérifie f'' - f''

 $2.f'+f=\varphi$. Vous changerez de variable et séparerez en $f=x\longmapsto x.e^x$. $\int_0^x e^{-u}.\varphi(u).du-e^x$. $\int_0^x u.e^{-u}.\varphi(u).du$ et dériverez alors deux fois.

Ajustez a et b pour que $t \mapsto a.e^t \cdot \cos(t) + b.e^t \cdot \sin(t)$ soit solution de $\forall t, \ y''_t - 3.y'_t + 2.y_t = e^t \cdot \cos(t)$.

Pouvez vous ajuster a et b pour que $t \mapsto a.e^t \cdot \cos(t) + b.e^t \cdot \sin(t)$ soit solution de $\forall t, \ y''_t - 2.y'_t + 2.y_t = e^t \cdot \cos(t) \cdot \bigcap_{1 \text{ pt.}} 1 \text{ pt.}$

Ajustez a et b pour que $t \mapsto a.t.e^t.\cos(t) + b.t.e^t.\sin(t)$ soit solution de $\forall t, \ y''_t - 2.y'_t + 2.y_t = e^t.\cos(t).$



On choisit le point M au hasard (uniforme). Quelle est la probabilité que l'angle en M soit aigu ?

Probabilité que l'angle en M soit aigu. 2 pt.

 \sharp_0 Une formule de dénombrement sur les nombres dits de Delannoy affirme : $\sum_{k=0}^n \binom{n}{k} . \binom{n+k}{n} = \sum_{k=0}^n 2^k . \binom{n}{k}^2$. On ne vous demande pas de la vérifier ici, mais d'écrire un programme qui prend n en entrée et calcule effectivement ces deux entiers. (le barème tiendra compte de la qualité informatique).

 \overline{n} est un entier naturel fixé, on définit sur $]0, +\infty[$ $u_n = x \longmapsto x^n$ et $v_n = x \longmapsto \ln(x)$ et $f_n = x \longmapsto x^n \cdot \ln(x)$.

 \bigstar_1 Déterminez $(u_n)^{(k)}$ pour tout k de 0 à n puis $(u_n)^{(n)}$. 2 pt.

★2 Montrez $(f_{n+1})' = (n+1).f_n + u_n$ puis $(f_n)^{(n)} = x \mapsto n!.(\ln(x) + H_n)$

où H_n est la série harmonique $H_n = \sum_{k=1}^n \frac{1}{k}.$

 \bigstar_3 Déterminez $(v_n)^{(k)}$ pour tout k de 0 à n.

LYCEE CHARLEMAGNE
M.P.S.T.2

LYCEE CHARLEMAGNE Mercredi 15 janvier M.P.S.I.2

IS14 CORRECTION

IS14 Formule du multinôme.

On développe donc (mentalement)
$$(a+b+c)^7 = \sum_{i+j+k=7} \frac{7!}{i!.j!.k!} a^i.b^j.c^k$$
.

On nous dit qu'on veut avoir
$$\frac{7.6.5.4.3.2.1}{i!.j!.k!} = \frac{7!}{i!.j!.k!} = 105 = 7 \times 15.$$

Pour que de $\frac{6.5.4.3.2.1}{i!.j!.k!}$ il reste le 5, c'est donc qu'aucun des facteurs en bas ne contient de 5. En revanche les 2 ont tous disparu. Et un des 3.

Le triplet (4, 2, 1) répond à la question. Et c'est le seul.

On a six termes:

$$105.(a^4.b^2.c + a^4.b.c^2 + a^2.b^4.c + a.b^4.c^2 + a^2.b.c^4 + a.b^2.c^4)$$

Pour avoir le plus gros coefficient possible, on minimise *a*, *b* et *c* avec (2, 2, 3).

$$210.(a^3.b^2.c^2 + a^2.b^3.c^2 + a^2.b^2.c^3)$$

Voici d'ailleurs la liste des coefficients

(7,0,0)	(6,1,0)	(5,2,0)	(5,1,1)	(4,3,0)	(4,2,1)	(3,3,1)	(3,2,2)
1	7	21	42	35	105	140	210

IS14 Equation en déterminant.

Si on calcule le produit A.B on trouve $\begin{pmatrix} 3.x & x+4 & x+1 \\ x+3 & 6 & 4 \\ x+3 & 8 & 5 \end{pmatrix}$ et en développant le déterminant (Sarrus, colonne, comme vous voulez), on trouve $x^2-5.x-6$.

Mais bien sûr, on va plus vite avec det(A) = x - 6, det(B) = x + 1 puis det(A.B) = det(A). det(B). On est en maths quand même.

L'équation du second degré $x^2 - 5 \cdot x - 6 = 8$ a pour discriminant $25 + 4 \cdot 14$ ce qui fait 9^2 . On trouve deux racines réelles et même entières : 7 et -2.

IS14 Déterminants.

(on soustrait juste la première colonne à la suivante à chaque fois).

a b b b	a b c b b c c c c	a b c d b b c d c c c d d d d d		
b.(a-b)	c.(a-b).(b-c)	d.(a-b).(b-c).(c-d)		

$$Com \begin{pmatrix} a & b & c \\ b & b & c \\ c & c & c \end{pmatrix} = \begin{pmatrix} c.(b-c) & c.(c-b) & 0 \\ c.(c-b) & c.(a-c) & c.(b-a) \\ 0 & c.(b-a) & b.(a-b) \end{pmatrix}$$

IS14 Déterminant et cnjgaison.

On passe de la matrice $\begin{pmatrix} 1+i & 1 & -i & 2+i \\ 1 & 1+i & 2+i & 3-i \\ 2 & 1+i & i & 3-i \\ 0 & 1 & 2-i & 1+i \end{pmatrix}$ à la matrice $\begin{pmatrix} 1-i & 1 & i & 2-i \\ 1 & 1-i & 2-i & 3+i \\ 2 & 1-i & -i & 3+i \\ 0 & 1 & 2+i & 1-i \end{pmatrix}$ par conjugaison de

chaque coefficient. Ne passerait on pas du déterminant de l'une au déterminant de l'autre en conjuguant ? On montre le résultat général $\det(\overline{M}) = \overline{\det(M)}$ et on l'applique à notre cas particulier pour trouver à la fin 5-6.i.

$$\overline{\det(M)} = \overline{\sum_{\sigma \in S_n} Sgn(\sigma) \cdot \prod_{k=1}^n a_k^{\sigma(k)}} = \sum_{\sigma \in S_n} \overline{Sgn(\sigma) \cdot \prod_{k=1}^n a_k^{\sigma(k)}}$$

$$\overline{\det(M)} = \sum_{\sigma \in S_n} \overline{Sgn(\sigma) \cdot \prod_{k=1}^n a_k^{\sigma(k)}} = \sum_{\sigma \in S_n} Sgn(\sigma) \cdot \prod_{k=1}^n \overline{a_k^{\sigma(k)}}$$

$$\overline{\det(M)} = \det(\overline{M})$$

On a utilisé « conjugué de la somme », « conjugué du produit », « signature réelle ».

IS14 Convolution.

Oui, la formule $\forall x$, $f(x) = \int_0^x t \cdot e^t \cdot \varphi(x-t) \cdot dt$ est bien un produit de convolution.

On note qu'avec le changement de variable u = x - t (renversant, non?) on arrive très vite à

$$f(x) = \int_{u=0}^{x} (x-u).e^{x-u}.\varphi(u).du$$

On sépare en deux intégrales puis on sort ce qui ne dépend pas de t (ne les traitez pas de constantes, ce sont des fonctions de x)

$$f = x \longmapsto x.e^x. \int_{u=0}^x e^{-u}.\varphi(u).du - e^x. \int_{u=0}^x u.e^{-u}.\varphi(u).du$$

On dérive ces produits de fonctions en rappelant $(x \longmapsto \int_0^x \psi(u).du)' = (x \longmapsto \psi(x))$

$$f' = x \longmapsto \left((x+1).e^{x}. \int_{u=0}^{x} e^{-u}.\varphi(u).du + x.e^{x}.e^{-x}.\varphi(x) \right) - \left(e^{x}. \int_{u=0}^{x} u.e^{-u}.\varphi(u).du + e^{x}.x.e^{-x}.\varphi(x) \right)$$

Les choses sont bien faites, le terme pas forcément dérivable $x \longmapsto x.\varphi(x)$ s'en va

$$f' = x \longmapsto (x+1).e^x. \int_{u=0}^x e^{-u}.\varphi(u).du - e^x. \int_{u=0}^x u.e^{-u}.\varphi(u).du$$

et on re-dérive ces produits

$$f'' = x \longmapsto \left((x+2) \cdot e^x \cdot \int_{u=0}^x e^{-u} \cdot \varphi(u) \cdot du + (x+1) \cdot e^x \cdot e^{-x} \cdot \varphi(x) \right) - \left(e^x \cdot \int_{u=0}^x u \cdot e^{-u} \cdot \varphi(u) \cdot du + e^x \cdot x \cdot e^{-x} \cdot \varphi(x) \right)$$

Il reste étrangement (quoique...) un terme en ϕ

$$f'' = x \longmapsto (x+2).e^x. \int_{u=0}^x e^{-u}.\varphi(u).du - e^x. \int_{u=0}^x u.e^{-u}.\varphi(u).du + \varphi(x)\Big)$$

Il reste à faire la combinaison demandée f''-2.f'+f en trois termes

f(x)	$x.e^{x}.\int_{u=0}^{x}e^{-u}.\varphi(u).du$	$e^{x}.\int_{u=0}^{x}u.e^{-u}.\varphi(u).du$	
-2.f'(x)	$(x+1).e^{x}.\int_{u=0}^{x}e^{-u}.\varphi(u).du$	$e^{x}.\int_{u=0}^{x}u.e^{-u}.\varphi(u).du$	
+f''(x)	$(x+2).e^{x}.\int_{u=0}^{x}e^{-u}.\varphi(u).du$	$e^x. \int_{u=0}^x u.e^{-u}.\varphi(u).du$	$\varphi(x)$
total	0	0	$\varphi(x)$

C'est donc étudié pour.

IS14 Equations différentielles avec second membre.

On dérive deux fois la fonction donnée

y_t	a.e	$t \cdot \cos(t)$	$b.e^t.\sin(t)$		
y'_t	$a.e^t.\cos(t)$	$-a.e^t.\sin(t)$	$b.e^t.\sin(t)$	$b.e^{t}.\cos(t) + b.e^{t}.\cos(t) - b.e^{t}.\sin(t)$	
y"t	$a.e^t.\cos(t) - a.e^t.\sin(t)$	$-a.e^t.\sin(t) - a.e^t.\cos(t)$	$b.e^t.\sin(t) + b.e^t.\cos(t)$		
$y''_t - 3.y'_t + 2.y_t$	$-a.e^t.\cos(t)$	$+a.e^t.\sin(t)$	$-b.e^t.\sin(t)$	$-b.e^t.\cos(t)$	

Comme on veut juste $e^t \cdot \cos(t)$ (et pas de $e^t \cdot \sin(t)$), on va poser -a - b = 1 et a - b = 0.

La solution de $\forall t$, $y''_t - 3.y'_t + 2.y_t = e^t \cdot \cos(t)$ cherchée est donc $\left(t \longmapsto \frac{-e^t \cdot \cos(t) - e^t \cdot \sin(t)}{2}\right)$

On recommence avec un coefficient qui change:

y _t	a	$a.e^t.\cos(t)$	$b.e^t.\sin(t)$		
y'_t	$a.e^t.\cos(t)$	$-a.e^t.\sin(t)$	$b.e^t.\sin(t)$	$b.e^t.\cos(t)$	
y"t	$a.e^t.\cos(t)$	$-a.e^t.\sin(t)$	$+b.e^t.\sin(t)$	$+b.e^t.\cos(t)$	
	$-a.e^t.\sin(t)$	$-a.e^t.\cos(t)$	$+b.e^t.\cos(t)$	$-b.e^t.\sin(t)$	
$y''_t - 2.y'_t + 2.y_t$	0	0	0	0	

C'est ballot. mais il ne fallait pas prendre une solution homogène.

Mais on augmente le degré.

-	that on augmente te degre.						
	y_t	$a.t.e^t.\cos(t)$		$+b.t.e^t.\sin(t)$			
	y'_t	$a.e^t.\cos(t)$ $b.e^t.\sin(t)$		$+a.t.e^t.\cos(t)$	$+b.t.e^t.\sin(t)$	$+b.t.e^t.\cos(t)$	$-a.t.e^t.\sin(t)$
	y''_t	$a.e^t.\cos(t)$	$+b.e^t.\sin(t)$	$+a.e^t.\cos(t)$	$+b.e^t.\sin(t)$	$+b.e^t.\cos(t)$	$-a.e^t.\sin(t)$
		$-a.e^t.\sin(t)$	$+b.e^t.\sin(t)$	$+a.t.e^t.\cos(t)$	$+b.t.e^t.\sin(t)$	$+b.t.e^t.\cos(t)$	$-a.t.e^t.\sin(t)$
				$-a.t.e^t.\sin(t)$	$+b.t.e^t.\cos(t)$	$-b.t.e^t.\sin(t)$	$-a.t.e^t.\cos(t)$
	$y''_t - 2.y_t' + 2.y_t$	$2.b.e^t.\cos(t)$			$-2.a.e^t.\sin(t)$		

Tous les termes en $t.e^t$ s'en vont.

Il ne reste qu'à imposer a=0 et $b=\frac{1}{2}: \overbrace{t\longmapsto \frac{t.e^t.\sin(t)}{2}}$

IS14 Programme informatique.

Version bourrin comme pas permis.

```
def facto(n: int): #int
....p = 1
....for k in range(1, n+1):
.....p *= k
....return p
```

```
def binomial(n int, k: int): #int
....return factor(n) // (facto(k)*facto(n-k))
```

On peut alors lancer:

```
def verif(n: int): #int, int
....S1, S2 = 0, 0
....for k in range(n+1):
.....S1 += binomial(n, k)*binomial(n+k, n)
.....S2 += (2**k) * (binomial(n, k))**2
....return S1, S2
```

Ce que je regarde alors sur vos copies : division euclidienne et pas flottante puissance par **2 et pas ^2

range(n+1) et pas juste range(n)

Mais ensuite, il faut être plus efficace. Déjà pour les binomiaux :

```
def binomial(n: int, k: int): #int
....if 2*k > n:
......return binomial(n, n-k)
....b = 1
....for i in range(k):
......b = b*(n-i) //(i+1)
....return b
```

Mais ensuite, calculer à chaque itération 2^k par 2 * *k c'est du gaspillage.

Vous demandez à Python de calculer 2**10 alors que juste avant vous avez calculé 2**9. Il vous suffisait de multiplier ce nombre par 2 pour passer au suivant (en l'ayant mémorisé quelquepart)t.

```
def verif(n: int): #int, int
....S1, S2 = 0, 0
....puis = 1
....for k in range(n+1):
......S1 += binomial(n, k)*binomial(n+k, n)
......S2 += puis * (binomial(n, k))**2
......puis *= 2
....return S1, S2
```

Et même, à quoi bon calculer $\binom{145}{12}$ avec ses douze termes quand juste avant vous avez calculé $\binom{145}{11}$. Il suffit

de construire nos binomiaux au fil de l'eau.

```
def verif(n: int): #int, int
....S1, S2 = 0, 0
....puis = 1
....binom = 1
....for k in range(n+1):
.....S1 += binomial(n, k)*binomial(n+k, n)
......S2 += puis * (binom)**2
......puis *= 2
......binom = (binom*(n-k)) // (k+1)
....return S1, S2
```

La somme S2 est maintenant clean.

Reste la somme S1 das laquelle on simplifie déjà le produit de binomiaux :

$$\binom{n}{k} \cdot \binom{n+k}{n} = \frac{n!}{k! \cdot (n-k)!} \cdot \frac{(n+k)!}{n! \cdot k!} = \frac{(n+k)!}{(n-k)! \cdot (k!)^2}$$

Il y a donc une simplification de factorielles qui se fait.

```
....for k in range(n+1):
.....S1 += binomial(n, k)*binomial(n+k, n)
```

devient

```
....for k in range(n+1):
.....S1 += facto(n+k) // (facto(n-k)*facto(k)**2)
```

et même, on crée aussi le terme général et on progresse d'un terme au suivant par multiplication et division

```
def verif(n: int): #int, int
....S1, S2 = 0, 0
....puis, binom, general = 1, 1, 1
....for k in range(n+1):
......S1 += general
......S2 += puis * (binom)**2
......puis *= 2
......binom = (binom*(n-k)) // (k+1)
......general = (general*(n+k+1)*(n-k)) // (k+1)**2
....return S1, S2
```

Et là, on n'a certes presque rien gagné en temps, mais on a la rigueur qui fera de nous un informaticien propre et efficace.

IS14 Série harmonique.

Par récurrence sur *k*, on montre

$$(x \longmapsto x^n)^{(k)} = (x \longmapsto n.(n-1)...(n-k+1).x^{n-k}) = \left(x \longmapsto \frac{n!}{(n-k)!}.x^{n-k}\right)$$

On initialise pour k égal à 0, et on passe au suivant en re-dérivant. On termine sur le dernier avec $(u_n)^{(n)} = n!$ (fonction constante à force de dériver);

On écrit $f_{n+1} = (x \longmapsto x^{n+1}. \ln(x))$ et on dérive le produit

$$(f_{n+1})' = (x \longmapsto (n+1).x^n.\ln(x) + \frac{x^{n+1}}{x})$$

C'est bien la formule $(f_{n+1})' = (n+1).f_n + u_n$.

Comme tout est de classe suffisante, on peut dériver *n* fois

$$(f_{n+1})^{(n+1)} = ((f_{n+1})')^{(n)} = (n+1) \cdot (f_n)^{(n)} + (u_n)^{(n)} = (n+1) \cdot (f_n)^{(n)} + n!$$

Cette formule va nous permettre d'établir à présent $(f_n)^{(n)} = n! \cdot (\ln + H_n)$ (à l'étage des fonctions).

On initialise pour n égal à $0: f_0 = x \longmapsto \ln(x)$ et $(f_0)^{(0)} = f_0 = 0!$. $\ln + H_0$ car la somme H_0 est vide.

Le non matheux initialisera pour n = 1 et trouvera ça plus prudent.

On se donne n et on suppose la propriété vraie au rang $n:(f_n)^{(n)}=n!.(H_n+\ln)$ et on applique le résultat précédent

$$(f_{n+1})^{(n+1)} = (n+1).(f_n)^{(n)} + n! = (n+1).(n!.(H_n + \ln)) + n!$$

On remplace et on factorise

$$(f_{n+1})^{(n+1)} = (n+1)!.(H_n + \ln) + n!$$

Il ne reste plus qu'à faire entrer n! dans la somme en l'écrivant $\frac{(n+1)!}{n+1}$

$$(f_{n+1})^{(n+1)} = (n+1)! \cdot (H_n + \frac{1}{n+1} + \ln)$$

La propriété est initialisée et héréditaire, elle est établie pour tout n.

Et on n'a même pas utilisé la formule de Leibniz!

Toujours par récurrence sur *k* non nul

$$(x \longmapsto \ln(x))^{(k)} = \left(x \longmapsto (-1)^{k+1}.(k-1)!.x^{-k}\right)$$

Comme la fonction f_n est un produit d'application C^{∞} on peut appliquer la formule de Leibniz $(f_n)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} . (u_n)^{(n-k)} . (v_n)^{(k)}$ puis en isolant le terme k=0 à traiter à part pour v_n

$$(f_n)^{(n)} = x \longmapsto n! \cdot \ln(x) + \sum_{k=1}^n \binom{n}{k} \cdot \frac{n!}{(n-(n-k))!} \cdot x^{n-(n-k)} \cdot (-1)^{k+1} \cdot (k-1)! \cdot x^{-k}$$

On simplifie ce qu'on peut

$$f^{(n)} = x \longmapsto n! \cdot \ln(x) + \sum_{k=1}^{n} {n \choose k} \cdot \frac{n!}{k!} \cdot (-1)^{k+1} \cdot (k-1)!$$

et même

$$f^{(n)} = x \longmapsto n! \cdot \left(\ln(x) + \sum_{k=1}^{n} \binom{n}{k} \cdot \frac{(-1)^{k+1}}{k} \right)$$

En identifiant les deux formules trouvées pour $(f_n)^{(n)}$ et en virant le logarithme en trop, on a enfin la formule

$$H_n = \sum_{k=1}^{n} (-1)^{k+1} \cdot \frac{\binom{n}{k}}{k}$$

qu'on sait obtenir aussi en calculant de deux façons $\int_0^1 (1+x+x^2+\ldots+x^{n-1}).dx$.

IS14 Des points dans un carré, des angles aigus.

Notons A et B les deux points du haut du carré, séparés d'une distance a (qui disparaitra dans les formules finales).

Les autres coins du carrés seront appelés C et D même si on n'en a pas besoin.

Quand passe-t-on de « l'angle AMB est obtus Ȉ « l'angle AMB est aigu »?

Quand cet angle est droit.

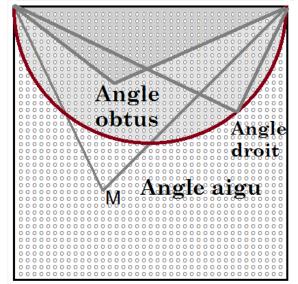
C'est à dire quand M est sur le demi cercle de rayon [A, B].

Les points réponsant à la question sont donc les points hors du demi-disque de rayon [A, B].

Comme les probabilités sont considérées comme uniformes, elles sont proportionnelles aux aires.

$$\frac{\textit{cas favorables}}{\textit{cas possibles}} = \frac{\textit{aire hors du demi} - \textit{disque}}{\textit{aire du carr\'e}}$$

L'application numérique donne $\frac{a^2-\frac{1}{2}.\pi.\left(\frac{a}{2}\right)^2}{a^2}$ et on trouve $1-\frac{\pi}{8}$



Le physicien dira 60 pour cent. Le SII-iste dira « plus d'une fois sur deux ». Le biologiste dira « à tous les coups » d'ailleurs, il ne fera qu'une simulation.

LYCEE CHARLEMAGNE
M.P.S.T.2

IS14 23- points 2025