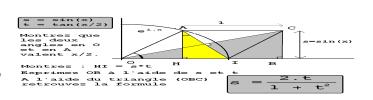


Trigo

Lycée Charlemagne



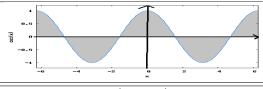
De septembre à toujours

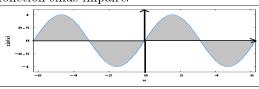
Somme/différence | Il n'y a que deux formules à retenir :

$$\cos(a+b) = \cos(a).\cos(b) - \sin(a).\sin(b)$$

$$\sin(a+b) = \sin(a).\cos(b) + \cos(a).\sin(b)$$

plus le fait que la fonction cosinus est paire et la fonction sinus impaire.





$$\cos(a-b) = \cos(a).\cos(b) + \sin(a).\sin(b)$$

On change b en -b:

$$\sin(a-b) = \sin(a).\cos(b) - \cos(a).\sin(b)$$

Par la formule de Pythagore, on peut transformer la première :

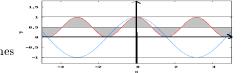
$$\cos(2.a) = \cos^2(\theta) - \sin^2(\theta) = 2.\cos^2(\theta) - 1 = 1 - 2.\sin^2(\theta)$$

Duplication (encore)

On renverse la formule précédente :
$$\cos^2(\theta) = \frac{1 + \cos(2.\theta)}{2}$$
 et $\sin^2(\theta) = \frac{1 - \cos(2.\theta)}{2}$

On les vérifie en 0, on somme pour se convaincre. On utilise ces formules pour intégrer \cos^2 et \sin^2 . Finalement, \cos^2 et \sin^2 sont des lignes

trigonométriques, augmentées de 1 et accélérées.



 $[\mathbf{Arc\ moitie}]$ En posant $t=\tan(\theta/2)$ (dès lors que θ n'est pas un multiple impair de π), on montre géométriquement si on le veut :

$$\cos(\theta) = \frac{1 - t^2}{1 + t^2} \left| \sin(\theta) = \frac{2 \cdot t}{1 + t^2} \right| \tan(\theta) = \frac{2 \cdot t}{1 - t^2} \left| d\theta = \frac{2 \cdot dt}{1 + t^2} \right|$$
 (en évitant les valeurs $t = 1$ et $t = -1$ pour la tangente)

Ces formules servent pour les changements de variable, en particulier $\int_a^b \frac{d\theta}{\sin(\theta)} = \left[\ln\left(\tan\left(\frac{\theta}{2}\right)\right)\right]_a^b$.

En utilisant un argument de géométrie simple : $\frac{\sin(\theta)}{1+\cos(\theta)} = \frac{1-\cos(\theta)}{\sin(\theta)} = \tan\left(\frac{\theta}{2}\right)$

Produits en sommes En additionnant $cos(a+b) = cos(a) \cdot cos(b) - sin(a) \cdot sin(b) \\
cos(a-b) = cos(a) \cdot cos(b) + sin(a) \cdot sin(b)$

 $\sin(a+b) = \sin(a).\cos(b) + \cos(a).\sin(b)$ on trouve $\sin(a-b) = \sin(a).\cos(b) - \cos(a).\sin(b)$

$$\begin{bmatrix} \cos(a) \cdot \cos(b) &= & \sin(a) \cdot \cos(b) &= & \cos(a) \cdot \sin(b) \\ \cos(a) \cdot \cos(b) &= & \sin(a) \cdot \sin(b) &= \\ & \cos(a+b) + \cos(a-b) & & \sin(a) \cdot \cos(a+b) \\ \hline 2 & & & & & & \\ \hline 2 & & \\ 2 & & \\ \hline 2 & & \\ 2 & & \\ \hline 2 & & \\ 2 & &$$

On vérifie ces formules en prenant b=0 ou a=b. Les produits peuvent varier entre -1 et 1, les sommes varient entre -2 et 2, d'où le facteur 2.

Ce sont elles qui permettent de calculer des intégrales du type $\int_{-}^{b} \cos(p.t).\cos(q.t).dt$.

On retient que pour le produit scalaire $(f, g) \mapsto \frac{1}{\pi} \cdot \int_{-\pi}^{\pi} f(t) \cdot g(t) \cdot dt$ la famille $\left(\frac{c_0}{2}, c_1, c_2, \dots, s_1, s_2, s_3, \dots\right)$ est orthonormée.

Sommes en produits En développant $\cos\left(\frac{a+b}{2} + \frac{a-b}{2}\right) + \cos\left(\frac{a+b}{2} - \frac{a-b}{2}\right)$ par exemple,

on trouve
$$\cos(a) + \cos(b) = 2 \cdot \cos\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right)$$

$$\cos(a) - \cos(b) = -2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \sin\left(\frac{a-b}{2}\right)$$

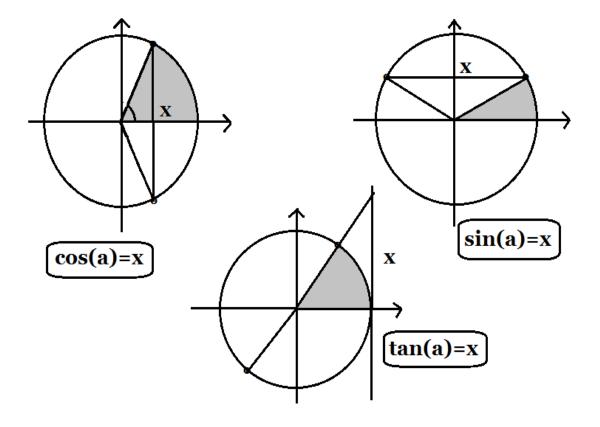
$$\sin(a) + \sin(b) = 2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right)$$

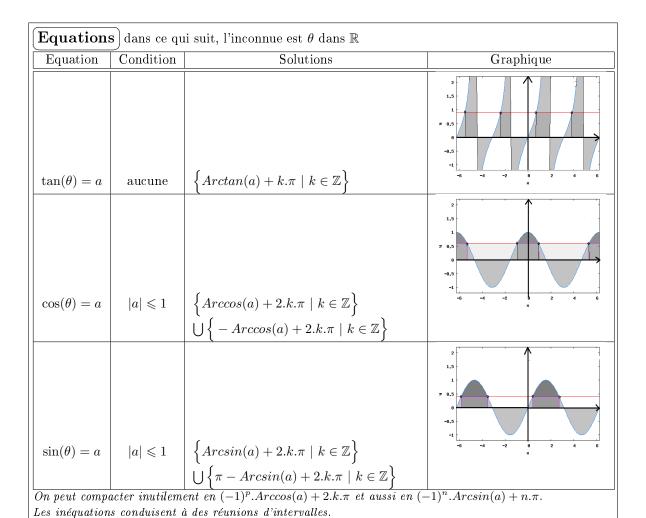
$$\sin(a) - \sin(b) = 2 \cdot \cos\left(\frac{a+b}{2}\right) \cdot \sin\left(\frac{a-b}{2}\right)$$
Coci permet de simplifier par exemple : $\frac{\sin(a) - \sin(b)}{2}$

$$\cos(a) - \cos(b) = -2.\sin\left(\frac{a+b}{2}\right).\sin\left(\frac{a-b}{2}\right)$$

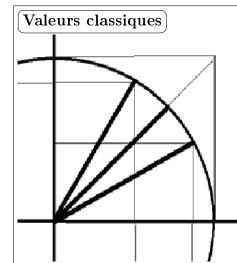
$$\sin(a) + \sin(b) = 2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right)$$
$$\sin(a) - \sin(b) = 2 \cdot \cos\left(\frac{a+b}{2}\right) \cdot \sin\left(\frac{a-b}{2}\right)$$

Ceci permet de simplifier par exemple : $\frac{\sin(a) - \sin(b)}{\cos(a) - \cos(b)}$





(Dérivation)								
$f(\theta)$	$\cos(\theta)$	$\sin(\theta)$	$\tan(\theta)$					
$f'(\theta)$	$-\sin(\theta)$	$\cos(\theta)$	$1 + \tan^{2}(\theta) = \frac{1}{\cos^{2}(\theta)}$ (retrouvez Pythagore)					
			(retrouvez Pythagore)					
f " (θ)	$-\cos(\theta)$	$-\sin(\theta)$	$2.\tan(\theta) + 2.\tan^3(\theta)$					
$f^{(n)}(\theta)$	$\cos\left(\theta + n.\frac{\pi}{2}\right)$	$\sin\left(\theta + n.\frac{\pi}{2}\right)$	polynôme (peu utilisé) en $\tan(\theta)$					
$\int_{a}^{b} f(\theta) . d\theta$	$[\sin(\theta)]_a^b$	$[-\cos(\theta)]_a^b$	$-\ln\left(\frac{\cos(b)}{\cos(a)}\right)$					



θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
$\sin(\theta)$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\cos(\theta)$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
$\tan(\theta)$	0	$1/\sqrt{3}$	1	$\sqrt{3}$	

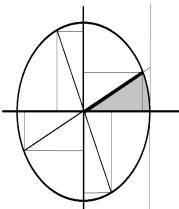
Pour d'autres valeurs classiques, on ajouter quelques signes

On pourra calculer aussi $\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$, $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6}+\sqrt{2}}{4}$ et $\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$, mais c'est inutile

[Complément/supplément]

	,		
α	$\sin(\alpha)$	$\cos(\alpha)$	$\tan(\alpha)$
$-\theta$	$-\sin(\alpha)$	$\cos(\alpha)$	$-\tan(\alpha)$
$\pi - \theta$	$\sin(\alpha)$	$-\cos(\alpha)$	$-\tan(\alpha)$
$\theta + \pi$	$-\sin(\alpha)$	$-\cos(\alpha)$	$\tan(\alpha)$
$\theta + 2.\pi$	$\sin(\alpha)$	$\cos(\alpha)$	$\tan(\alpha)$
$\theta + \frac{\pi}{2}$	$\cos(\alpha)$	$-\sin(\alpha)$	$-1/\tan(\alpha)$
$\frac{\pi}{2} - \theta$	$\cos(\alpha)$	$\sin(\alpha)$	$1/\tan(\alpha)$

On n'apprend pas par coeur ces formules. On les visualise sur le cercle trigonométrique. On se souvient par exemple qu'avec $\pi/2 - \theta$, on échange sinus et cosinus.



Géométrie du triangle

Dans le triangle rectangle, on a bien sûr:

. oppose	. adjacent	, oppose
$sinus = \frac{1}{hypothenuse}$	$cosinus = \frac{1}{hypothenuse}$	$tangente = \frac{1}{adjacent}$

et on retrouve l'angle α en différents endroits. Le centre du cercle circonscrit est bien sûr le milieu de l'hypothénuse.

Dans le triangle quelconque, on a la formule

Dans le triangle quelconque, on a la fo d'Euclide/Héron/Al Kashi/Pythagore :
$$\boxed{a^2 = b^2 + c^2 - 2.b.c.\cos(\alpha)}$$
 On a aussi
$$\frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c} = \frac{1}{2.R}$$
 L'aire se calcule naturellement par
$$\frac{2.a.b}{\sin(\gamma)} = \frac{2.b.c}{\sin(\alpha)} = \frac{1}{2.R}$$

mais aussi
$$\frac{\sqrt{(a+b+c).(a+b-c).(b+c-a).(c+a-b)}}{2}$$
.

