LYCEE CHARLEMAGNE Mercredi 19 mars $\mathcal{M}.\mathcal{P}.\mathcal{S}.\mathcal{I}.2$

2024

2025

Montrez que l'intersection de deux intervalles I et J de \mathbb{R} est un intervalle. $2 \, \mathrm{pt}$

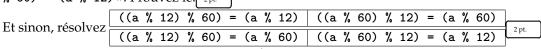
Soit (I_n) une famille d'intervalles de $\mathbb R$ (ouverts, fermés, semi-ouverts, bornes ou non on n'en sait rien), contenant tous 0. Montrez que $\bigcup_{n\in\mathbb{N}} I_n$ est encore un intervalle de \mathbb{R} . $3 \, \mathrm{pt}$

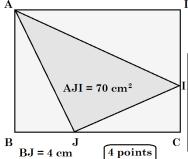
Quantifiez $a_n \to_{n \to +\infty} \alpha$ et « f est continue en α ». $\boxed{}_{2pt}$ Montrez alors avec ces deux hypothèses $f(a_n) \to_{n \to +\infty} f(\alpha)$. 1 pt.

On suppose maintenant au contraire $\exists \varepsilon_0 > 0$, $\forall \eta > 0$, $\exists x \in [\beta - \eta, \beta + \eta]$, $|f(x) - f(\beta)| > \varepsilon_0$. Montrez qu'il existe une suite (b_n) qui converge vers β et qui vérifie pourtant $|f(b_n) - f(\beta)| > \varepsilon_0$.

Montrez que sur chaque intervalle $\left]-\frac{\pi}{2}+n.\pi, \frac{\pi}{2}+n.\pi\right[$ (noté I_n) pour n dans \mathbb{N}) l'équation $\tan(x)=th(x)$ admet une solution et une seule, qu'on va donc noter x_n . Montrez $:x_n\sim_{n\to+\infty}n.\pi$. n. On pose alors $y_n = x_n - n.\pi$. Montrez : $\tan(y_n) = \tan(x_n) \to_{n \to +\infty} 1$. Déduisez que la suite (y_n) converge en croissant vers $\frac{\pi}{4}$. A-t-on $e^{x_n} \sim_{n \to +\infty} e^{n.\pi}$? On pose alors pour tout $n: z_n = x_n - n.\pi - \frac{\pi}{4}$. Montrez $: \tan(z_n) = -e^{-2.x_n} \cdot \sum_{\text{2 pt.}} \text{Complétez } x_n = a.n + b + \frac{c}{n} + o\left(\frac{1}{n}\right)_{n \text{ and } n} \cdot \sum_{\text{2 pt.}} \frac{c_{\text{2 pt.}}}{n} \cdot \sum_{\text{2 pt.}} \frac{c_{\text{2 pt.}}}{n}$

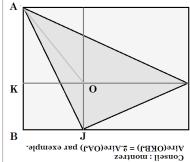
Pour les nombres écho, Raphaël avait besoin de petits résultats du type « pour tout a entier, ((a % 12) % 60) = (a % 12) ». Prouvez le. [2pt]





DI = 6 cmMontrez que l'aire du grand rectangle (ABCD)

vaut 164 cm^2 .



 \heartsuit Vrai ou faux : $t \mapsto ch(t)$ est solution particulière de $y''_t + 3.y'_t + 2.y_t = 3.e^t$. Vrai ou faux:

 $t \mapsto e^{-t} + 2.t^2 - 6.t + 7 \text{ est}$ solution particulière de $y''_t + 3.y_t^{\hat{t}} + 2.y_t = 4.t^2$.

Si (a_n) est une suite réelle, on pose $S_n = \frac{\displaystyle\sum_{k=0}^n k.a_k}{n.(n+1)}$. Montrez que si (a_n) est constante, alors (S_n) l'est

aussi. Montrez pour tout $n: S_{n+1} - S_n = 2 \cdot \frac{\sum_{k=1}^n k.(a_{n+1} - a_k)}{n.(n+1).(n+2)}$. Montrez que si (a_n) est croissante, alors (S_n) l'est aussi. On suppose $\forall \varepsilon > 0$, $\exists N_{\varepsilon}, \forall k \geqslant N_{\varepsilon}, |a_k| \leqslant \varepsilon$. Montrez pour n plus grand que N_{ε} :

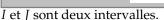
 $|S_n| \leqslant \frac{A_{\varepsilon}}{n.(n+1)} + \frac{\sum\limits_{k=N_{\varepsilon+1}}k.\varepsilon}{n.(n+1)} \leqslant \frac{A_{\varepsilon}}{n^2} + \frac{\varepsilon}{2} \text{avec } A_{\varepsilon} = |\sum\limits_{k=1}^{N_{\varepsilon}}k.u_k|. \text{ a partir de quel rang } P_{\varepsilon} \text{ est on sûr d'avoir d'avo$ $|S_n| \leqslant \varepsilon$? Péduisez $S_n \longrightarrow_{n \to 0} 0$. Vers quoi converge (S_n) si (a_n) converge vers λ ? Pers quoi converge (S_n) si (a_n) converge vers λ ?

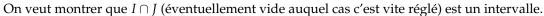
LYCEE CHARLEMAGNE Mercredi 19 mars M.P.S.I.2

IS21 CORRECTION

IS21

Intervalles.





On prend a et b dans $I \cap J$ et t entre 0 et 1. On doit montrer que tout réel de la forme (1 - t).a + t.b est encore dans $I \cap J$.

Mais comme a et b sont dans l'intervalle I, (1 - t).a + t.b est encore dans I.

De même, comme a et b sont dans l'intervalle J, (1 - t).a + t.b est encore dans J.

Que vous faut il de plus pour dire que (1 - t).a + t.b est dans $I \cap J$?

Maintenant, on prend des intervalles ayant tous un point commun : 0.

Leur réunion doit rester un intervalle.

Exemple :
$$[-1, 2[\cup] - 2, 5[\cup] - \infty, 1]$$
.

On se donne *a* et *b* dans cette réunion. Et *t* entre 0 et 1.

Il faut montrer que (1 - t).a + t.b est encore dans cette réunion.

Mais *a* et *b* ne sont pas forcément dans le même intervalle c'est ça le problème.

a est dans un intervalle I_p et b est dans un intervalle I_q .

Et on va montrer que (1-t).a+t.b est encore dans un d'entre eux (peut être I_p , peut être I_q ou même encore un autre I_k ?).

Sans perte de généralisé, on va supposer $a \leqslant b$. Et on va raisonner par disjonction de cas.

• a et b sont négatifs. $a \le b \le 0$.

Comme a est dans I_p et 0 aussi (0 est dans tous les intervalles), le réel b vérifiant $a \le b \le 0$ est aussi dans I_p .

Maintenant que I_p est un intervalle (on le redit), le réel (1-t).a+t.b est dans I_p donc dans $\bigcup_{n \in \mathbb{N}} I_n$.

a est négatif et b est positif : $a \le 0 \le b$.

a et 0 sont dans I_p .

0 et b sont dans I_q .

Le réel (1-t).a+t.b est alors soit entre a et 0, soit entre 0 et b (suivant la valeur de t par rapport à $\frac{a}{a-b}$).

Si il est entre a et 0, alors il est dans I_p . Il est donc dans $\bigcup I_n$.

Si il est entre 0 et b , alors il est dans I_q . Il est donc dans $\bigcup_{n\in\mathbb{N}}^{n\in\mathbb{N}}I_n$.

• a et b sont positifs. $0 \le a \le b$.

On note que a est entre 0 et b (éléments de I_q). Il est donc I_q .

Comme a et b sont dans I_q , le réel (1-t).a+t.b est dans I_q et donc dans $\bigcup_{n\in\mathbb{N}}I_n$.

IS21 Convergene et limites.

On écrit deux hypothèses et une conclusion souhaitée

Н	$a_n \longrightarrow_{n \to +\infty} \alpha$	$\forall \varepsilon > 0$, $\exists N_{\varepsilon}$, $\forall n \geqslant N_{\varepsilon}$, $ a_n - \alpha \leqslant \varepsilon$				
11	f continue en α	$\forall \varepsilon > 0, \ \exists \eta_{\varepsilon} > 0, \ \forall x \in D_f, \ x - \alpha \leqslant \eta_{\varepsilon} \Rightarrow f(x) - f(\alpha) \leqslant \varepsilon$				
?	$f(a_n) \longrightarrow_{n \to +\infty} f(\alpha)$	$\forall \varepsilon > 0, \ \exists P_{\varepsilon}, \ \forall n \geqslant P_{\varepsilon}, \ f(a_n) - f(\alpha) \leqslant \varepsilon$				

Pour ε donné, on pose $P_ε = N_{(η_ε)}$ et on vérifie pour tout n de $\mathbb N$

$$n \geqslant N_{(\eta_{\varepsilon})} \Rightarrow |a_n - \alpha| \leqslant \eta_{\varepsilon} \Rightarrow |f(a_n) - f(a)| \leqslant \varepsilon$$

(même si enchaîner les implications n'a pas de sens).

On fait maintenant une hypothèse dans laquelle on reconnaît la parfaite négation de la continuité en α

$$\exists \varepsilon_0 > 0, \ \forall \eta > 0, \ \exists x \in [\beta - \eta, \beta + \eta], \ |f(x) - f(\beta)| > \varepsilon_0$$

On ne peut pas jouer sur ε_0 puisqu'il est quantifié en \exists . mais on peut jour sur ε puisque lui a un joli \forall .

On l'applique à $\varepsilon = \frac{1}{n+1}$ puisqu'on veut construire une suite et qu'on veut la voir tendre vers quelquechose.

On sait alors pour chaque n que pour ce choix $\varepsilon=\frac{1}{n+1}$ il existe au moins un élément x de D_f vérifiant $|x-\beta|\leqslant \frac{1}{n+1}$ mais aussi $|f(x_n)-f(\beta)|>\varepsilon_0$.

Puisqu'il en existe, on en reprend un, et on l'appelle b_n .

Comme on peut le faire pour tout n, on construit donc une suite (b_n) d'éléments de D_f .

On a alors pour tout $x:|b_n-\beta|\leqslant \frac{1}{n+1}$, ce qui, par théorème des gendarmes donne $b_n\longrightarrow_{n\to+\infty}\beta$. Mais en même temps, la relation $|f(b_n)-f(\beta)|>\varepsilon_0$ fait que $(f(b_n))$ ne peut pas converger vers $f(\beta)$.

Même si $(f(b_n)$ convergeait vers quelquechose (vers une limite μ), cette limite vérifierait $|\mu - f(\beta)| \ge \varepsilon_0 > 0$.

On a donc prouvé deux implications, qui donnent une équivalence $(p \Rightarrow q \text{ et } \overline{p} \Rightarrow \overline{q})$

f continue en α	\Rightarrow	pour toute suite (a_n) qui converge vers α la suite $(f(a_n))$ converge vers $f(\alpha)$
f non continue en β	\Rightarrow	il existe une suite (b_n) qui converge vers β sans que la suite $(f(b_n)$ converge vers $f(\beta)$

IS21 Suite implicite.

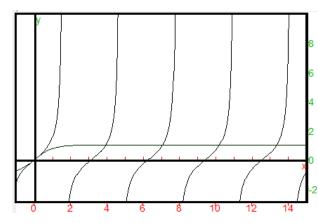
On définit la fonction différence $x \longmapsto \tan(x) - th(x)$ qu'on va noter f. Elle est continue. Sa dérivée est $x \longmapsto 1 + \tan^2(x) - (1 - th^2(x))$. Sa dérivée est positive.

Cette application est strictement croissante $^{premier\ mot\ clef}$. Et elle est continue $^{deuxieme\ mot\ clef}$.

En $-\frac{\pi}{2} + n.\pi$ par valeur supérieure, elle tend vers $-\infty$ (à cause de la tangente, car l'autre terme est borné par -1 et 1).

En $\frac{\pi}{2} + n.\pi$ par valeur inférieure, elle tend vers $+\infty$ (à cause de la tangente, car l'autre terme reste borné comme un militant politique).

Par théorème des valeurs intermédiaire sur l'intervalle I_n l'équation I_n l'équation



Par stricte croissance rettour au premier mot clef la solution est unique.

On va donc noter x_n la n^{ieme} solution.

On a $-\frac{\pi}{2} + n.\pi < x_n < \frac{\pi}{2} + n.\pi$ et après division par $n.\pi$ (positif) $-\frac{1}{2.n} + 1 < \frac{x_n}{n.\pi} < \frac{1}{2.n} + 1$. Par théorème des gendarmes x_n tend vers 1 quand n tend vers $+\infty$. C'est la définition de l'équivalent $x_n \sim_{n \to +\infty} n.\pi$.

On calcule donc une différence $y_n = x_n - n.\pi$.

Par périodicité de l'application tangente : $tan(y_n) = tan(x_n)$. Par définition de la suite :

$$\tan(y_n) = \tan(x_n) = th(x_n)$$

Mais comme x_n tend vers $+\infty$ quand n tend vers l'infini (minoration par $n.\pi - \frac{\pi}{2}$), on déduit que $th(x_n)$ tend vers 1.

Avec $tan(y_n) \longrightarrow 1$ on ne déduit pas directement $y_n \to \frac{\pi}{4}$. En effet, il reste normalement des modulo π si on peut dire

Rappelons que $\tan\left(\frac{5.\pi}{4} + \frac{1}{n}\right)$ tend vers & alors que $\frac{5.\pi}{4} + \frac{1}{n}$ ne tend pas vers $\frac{\pi}{4}$. Et que penser même de $\tan\left(\frac{(4.n+1).\pi}{4} + \frac{1}{n}\right)$.

Mais y_n reste entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$ par construction.

On est donc en droit de passer à l'arctangente : $y_n = Arctan(th(x_n))$ tend bien vers Arctan(1) c'est à dire $\frac{\pi}{4}$.

Certes on a $x_n \sim_{n\to+\infty} n.\pi$. Mais de là à déduire $e^{x_n} \sim_{n\to+\infty} e^{n.\pi}$ il ne faut pas pousser. Revenons à la définition avec le quotient

$$\frac{e^{x_n}}{e^{n.\pi}} = e^{x_n - n.\pi} = e^{y_n} \longrightarrow e^{\pi/4} \neq 1$$

Bref, $a_n \sim b_n \not\Rightarrow e^{a_n} \sim e^{b_n}$. Mais je vous connais, vous me l'écrirez, rien que parce que ça vous permettra de conclure.

Avec $z_n = y_n - \frac{\pi}{4}$ on pousse un cran plus loin. Et cette fois, il s'agit d'avoir des exponentielles. On va donc revenir à la définition de la tangente hyperbolique. On utilise la formule de $\tan(a+b)$ et la propriété $\tan(\pi/4) = 1$:

$$\tan(z_n) = \tan\left(y_n - \frac{\pi}{4}\right) = \frac{\tan(y_n) - 1}{1 + \tan(y_n)} = \frac{th(x_n) - 1}{1 + th(x_n)} = \frac{\frac{e^{x_n} - e^{-x_n}}{e^{x_n} - e^{-x_n}} - 1}{1 + \frac{e^{x_n} - e^{-x_n}}{e^{x_n} - e^{-x_n}}}$$

$$\tan(z_n) = \frac{(e^{x_n} - e^{-x_n}) - (e^{x_n} - e^{-x_n})}{(e^{x_n} - e^{-x_n}) + (e^{x_n} - e^{-x_n})} = \frac{-2 \cdot e^{-x_n}}{2 \cdot e^{-x_n}} = -e^{-2 \cdot x_n}$$

Cette quantité tend vers 0 par valeur inférieure.

Comme z_n est entre $-\frac{3.\pi}{4}$ et 0 ($x_n - n.\pi - \frac{\pi}{4}$ avec x_n entre $n.\pi - \frac{\pi}{2}$ et $n.\pi - \frac{\pi}{2}$) on passe aussi à l'arctangente et $z_n = Arctan(-e^{-2.x_n})$ tend aussi vers 0 par valeur inférieure.

Pour l'instant, on a juste $x_n = n.\pi + \frac{\pi}{4} + z_n$ avec $z_n \longrightarrow_{n \to +\infty} 0$ soit encore $x_n = n.\pi + \frac{\pi}{4} + o(1)_{n \to +\infty}$.

Il faudrait être plus précis sur ce petit o et deviner si il est en $\frac{1}{n}$ ou $\frac{2}{n}$ ou plutôt $-\frac{1}{n}$ ou pourquoi pas $\frac{-1}{n.\pi}$. A quelle vitesse

Il suffit de dériver et reporter dans l'équation différentielle

		*		
	y''_t	$+3.y'_{t}$	$+2.y_t$	
$cas y_t = ch(t)$	ch(t)	+3.sh(t)	+2.ch(t)	$3.(ch(t) + sh(t)) = 3.e^t$
$\cos y_t = e^{-t}$	e^{-t}	$-3.e^{-t}$	$+2.e^{-t}$	=0
$2.t^2 - 6.t + 7$	4	+12.t - 18	$+4.t^2 - 12.t + 14$	$4.t^2$
				_

Dans les deux cas, l'équation est vérifiée.

On peut dire qu'on a une solution (pas la solution, puisqu'il n'y a pas de condition initiale).

Ce que je risque de croiser :

c'est $2.t^2 - 6.t + 7$ qui est la solution particulière, alors que $e^{-t} + 2.t^2 - 6.t + 7$ es une somme « homogène plus particulière ».

C'est commettre une erreur. Il n'y a pas de raison de favoriser une solution particulière plutôt qu'une autre.

Proprement, on peut dire que $2.t^2 - 6.t + 7$ est UNE solution particulière

 $2.t^2 - 6.t + 7$ est LA solution particulière POLYNO-MIALE

IS21 Congruences.

On prend un entier a et on le réduit modulo 12 ou modulo 60 et même les deux à la fois.

Posons tout de suite une formule utile : a = 12.p + r avec r entier dans range(12) (donc c = a%12).

Pour prouver (a%12) % 60 = (a%12), il suffit donc de prouver (c % 60) = c.

Or, comme c est entre 0 et 12, on a c = 0.60+c avec c entre 0 et 12 (et donc entre 0 et 60).

On a donc (c % 60) = c.

Exemple: ((2025 % 12) % 60) = (9 % 60) = 9.

On peut donc remplir une des cases du jeu de quatre équations. Comme la formule est vraie pour tout a, on a $S_a = \mathbb{Z}$.

((a % 12) % 60) = (a % 12)	$S_a = \mathbb{Z}$	((a % 60) % 12) = (a % 60)
((a % 12) % 60) = (a % 60)		((a % 60) % 12) = (a % 12)

Écrivons aussi pour les besoins de l'exercice $a=60.\gamma+\rho$ avec γ entier (le quotient) et r entier entre 0 et 60.

On a alors $a = 5.12...\gamma + \rho$ et donc $a - \rho$ est un multiple de 12.

L'équation ((a % 60) % 12) = (a % 60) devient ρ %12 = ρ .

Comme ρ est ρ est un entier entre 0 et 60, on valide pour ρ entre 0 et 11(inclus) et on refuse pour ρ entre 12 et 59 inclus).

((a % 12) % 60) = (a % 12)	$S_a = \mathbb{Z}$ ((a % 60) % 12) = (a % 60)	$ \mid \{60.\gamma + \rho \mid \gamma \in \mathbb{Z}, \ 0 \leqslant \rho < 12\} \mid $
((a % 12) % 60) = (a % 60)	((a % 60) % 12) = (a % 12)	

Exemple : 2025%60 = 45 puis (2025%60)%12 = (45%12) = 9 et on a $(2025\%60)\%12 = 9 \neq 45 = (45\%60)$.

69%60 = 9 puis (69%60)%12 = (9%12) = 9 et on a (69%60)%12 = 9 = (69%60).

En revanche l'équation ((a % 60) % 12) = (a % 12) devient $(\rho\%12) = (a\%12)$. Et ceci est vrai pour tout entier, par notre remarque $a - \rho \in 12.\mathbb{Z}$.

((a % 12) % 60) = (a % 12)	$S_a = \mathbb{Z} \mid$ ((a % 60) % 12) = (a % 60)	$S_a = \{60.\gamma + \rho \mid \gamma \in \mathbb{Z}, \ 0 \leqslant \rho < 12\}$
((a % 12) % 60) = (a % 60)	((a % 60) % 12) = (a % 12)	$S_a = \mathbb{Z}$

Exemple: 2025%60 = 45 puis (2025%60)%12 = (45%12) = 9 et on a (2025%60)%12 = 9 = (2025%12).

On termine avec ((a % 12) % 60) = (a % 60) qui donne, comme on l'a vu pour la première (a % 12) = (a % 60).

On retrouve la condition « le reste modulo 60 est plus petit que 12.

((a % 12) % 60) = (a % 12)	$S_a = \mathbb{Z}$	((a % 60) % 12) = (a % 60)	$S_a = \{60.\gamma + \rho \mid \gamma \in \mathbb{Z}, \ 0 \leqslant \rho $
((a % 12) % 60) = (a % 60)	$S_a = \{60.\gamma + \rho \mid \gamma \in \mathbb{Z}, \ 0 \leqslant \rho < 12\}$	((a % 60) % 12) = (a % 12)	$S_a = \mathbb{Z}$

IS21 Théorème du type Cesàro.

On part d'une suite (a_n) et on construit donc la suite $\left(\frac{a_1}{2}, \frac{a_1+2.a_2}{3}, \frac{a_1+2.a_2+3.a_3}{12}, \frac{a_1+2.a_2+3.a_3+4.a_4}{20}, \dots\right)$. C'est à peu de choses près une moyenne pondérée, sauf que la somme des coefficients vaut $1+2+\ldots+n$ (c'est à dire $\frac{n.(n+1)}{2}$) alors qu'on divise par n.(n+1).

On suppose (a_n) constante, égale à α . On calcule S_n pour n donné

$$S_n = \frac{\sum_{k=1}^n k.\alpha}{n.(n+1)} = \frac{\alpha.\sum_{k=1}^n k}{n.(n+1)} = \alpha.\frac{\frac{n.(n+1)}{2}}{\frac{2}{n.(n+1)}} = \frac{\alpha}{2}$$

La suite (S_n) est constante, égale à la moitié de la suite (a_n) .

On se donne un entier n et on définit à la fois $S_n = \frac{\sum_{k=1}^n k.a_k}{n.(n+1)}$ et

$$S_{n+1} = \frac{\sum_{k=1}^{n+1} k.a_k}{(n+1).(n+2)} = \frac{(n+1).a_{n+1} + \sum_{k=1}^{n} k.a_k}{(n+1).(n+2)}$$

et on calcule la différence en réduisant au dénominateur commun et en remplaçant $\frac{n.(n+1)}{2}$ par $\sum_{k=1}^{n} a_k$:

$$S_{n+1} - S_n = \frac{(n+1).a_{n+1} + \sum_{k=1}^n k.a_k}{(n+1).(n+2)} - \frac{\sum_{k=1}^n k.a_k}{n.(n+1)}$$

$$S_{n+1} - S_n = \frac{n.(n+1).a_{n+1} + n.\sum_{k=1}^n k.a_k - (n+2).\sum_{k=1}^n k.a_k}{n.(n+1).(n+2)}$$

$$S_{n+1} - S_n = \frac{n.(n+1).a_{n+1} - 2.\sum_{k=1}^n k.a_k}{n.(n+1).(n+2)} = 2.\frac{\frac{n.(n+1)}{2}.a_{n+1} - \sum_{k=1}^n k.a_k}{n.(n+1).(n+2)}$$

$$S_{n+1} - S_n = 2.\frac{\sum_{k=1}^n k.a_{n+1} - \sum_{k=1}^n k.a_k}{n.(n+1).(n+2)} = 2.\frac{\sum_{k=1}^n k.(a_{n+1} - a_k)}{n.(n+1).(n+2)}$$

(question pas évidente du tout, et même la récurrence passait difficilement, sauf l'initialisation).

On suppose (a_p) croissante. On calcule comme ci dessus, pour n donné $S_{n+1} - S_n$ qui est du signe de $\sum_{k=1}^n k.(a_{k+1} - a_k)$.

Mais par croissance de (a_p) chaque différence $a_{n+1} - a_k$ est positive (puisque k reste entre 1 et n). La différence $S_{n+1} - S_n$ est positive pour tout n. C'est exactement « la suite (S_n) » est croissante.

Dans $\forall \varepsilon > 0$, $\exists N_{\varepsilon}$, $\forall k \geqslant N_{\varepsilon}$, $|a_k| \leqslant \varepsilon$ on reconnaît « a_n tend vers 0 quand n tend vers l'infini ».

Comme on nous dit que n est plus grand que N_{ε} on s'autorise) couper en deux la somme $\sum_{k=1}^{n} k.a_{k}$ avec la relation de Chasles et l'inégalité triangulaire

$$\left| \sum_{k=1}^{n} k.a_{k} \right| = \left| \sum_{k=1}^{N_{\varepsilon}} k.a_{k} + \sum_{k=N_{\varepsilon}+1}^{n} k.a_{k} \right| \leqslant \left| \sum_{k=1}^{N_{\varepsilon}} k.a_{k} \right| + \sum_{k=N_{\varepsilon}+1}^{n} k.|a_{k}|$$

Dans la seconde partie de la somme, les indices sont tous plus grands que N_{ε} on peut donc majorer

$$|S_n| = \frac{\left|\sum_{k=1}^n k.a_k\right|}{n.(n+1)} = \leqslant \frac{\left|\sum_{k=1}^{N_{\varepsilon}} k.a_k\right|}{n.(n+1)} + \frac{\sum_{k=N_{\varepsilon}+1}^n k.\varepsilon}{n.(n+1)}$$

Dans la seconde somme, on factorise ε et on majore $\sum_{k=N_{\varepsilon}+1}^{n} k$ par la somme plus longue $\sum_{k=1}^{n} k$ dont la valeur a l'avan-

tage d'être connue : $\frac{n.(n+1)}{2}$ (comme par hasard). La seconde somme se majore donc par $\frac{\varepsilon}{2}$ après simplification des n.(n+1).

Quant à la première, on y majore $\frac{1}{n.(n+1)}$ par $\frac{1}{n^2}$.

On veut majorer alors cette nouvelle somme par $\frac{\varepsilon}{2} + \frac{\varepsilon}{2}$. On va donc demander à avoir $\frac{A_{\varepsilon}}{n^2} \leqslant \frac{\varepsilon}{2}$.

Le seul sur lequel on puisse jouer est n à qui on va demander $\frac{2.A_{\varepsilon}}{\varepsilon} \leqslant n^2$.

On va donc demander $n \geqslant \left[\sqrt{\frac{2.A_{\varepsilon}}{\varepsilon}}\right] + 1$ (quantité cohérente, car plus ε sera petit, plus elle sera grande).

Pour avoir les deux termes en $\varepsilon/2$ on va donc poser $P_{\varepsilon} = Max\left(N_{\varepsilon/2}, \left[\sqrt{\frac{2.A_{\varepsilon}}{\varepsilon}}\right] + 1\right)$ avec $A_{\varepsilon} = \left|\sum_{k=1}^{N_{\varepsilon}} k.a_{k}\right|$.

Cette quantité dépend bien de ε mais évidemment pas de n puisque c'est n qui doit dépendre de P_{ε} (par $n \geqslant P_{\varepsilon}$).

On a prouvé $\forall \varepsilon > 0$, $\exists P_{\varepsilon}$, $\forall n \geqslant P_{\varepsilon}$, $\left| S_n \right| \leqslant \varepsilon$. C'est exactement la définition de $S_n \longrightarrow_{n \to +\infty} 0$.

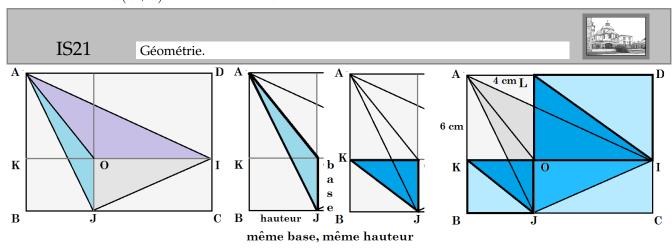
Si la suite tend vers 0, la suite des « moyennes » tend aussi vers 0.

Mais si la suite (a_n) tend vers λ , le phénomène doit être juste translaté. Écrivons $a_n = \lambda + u_n$ avec u_n qui converge vers 0 quand n tend vers l'infini (en fait, c'est $u_n = a_n - \lambda$). On calcule alors

$$A_n = \frac{\sum_{k=1}^n k.(\lambda + u_k)}{n.(n+1)} = \frac{\sum_{k=1}^n k.\lambda}{n.(n+1)} + \frac{\sum_{k=1}^n k.u_k}{n.(n+1)} = \frac{n.(n+1)}{2}.\lambda + S_n = \frac{\lambda}{2} + S_n$$

La suite (S_n) associée à la suite (u_n) converge vers 0 (à coups d' ε , on vient de le faire, puisque u_n tend bien vers 0).

On déduit que $\frac{\displaystyle\sum_{k=1}^n k.(\lambda+u_k)}{n.(n+1)}$ converge vers $\frac{\lambda}{2}$ quand n tend vers $+\infty$ si a_n convergeait vers λ .



On découpe le triangle *AJI* en trois triangles : *OAJ*, *OJI* et *OIA*.

On les regarde un par un.

IOI est rectangle en O. Pas grand chose de plus à dire.

OAJ a pour base *OJ* et pour hauteur *OK*.

Et comme par hasard *OKJ* a pour base *OJ* et hauteur *OK*.

Les deux triangles ont la même aire.

On peut le voir par déformation du triangle à base fixe et hauteur constante.

On peut aussi comparer deux déterminant : $\det(\overrightarrow{OA}, \overrightarrow{OJ})$ et $\det(\overrightarrow{OK}, \overrightarrow{OJ})$.

Il suffit décrire et développer $\det(\overrightarrow{OA}, \overrightarrow{OJ}) = \det(\overrightarrow{OK} + \overrightarrow{KA}, \overrightarrow{OJ}) = \det(\overrightarrow{OK}, \overrightarrow{OJ}) + \det(\overrightarrow{KA}, \overrightarrow{OJ})$ et le second déterminant est nul, par colinéarité des vecteurs.

OIA a pour base *OI* et pour hauteur *KA*.

Son aire $\frac{OI \times KA}{2}$ est égale à celle de OIL.

triangle	le OJI		OAJ		OAJ		total 70 cm ²	
même aire	ire triangle OJI		triangle OKJ		triangle OKJ			
on double	rectangle OJCI	lui	rectangle OKBJ	lui	rectangle OKBJ lui		lui lui	lui total 140 cm ²

Pour l'aire totale du grand rectangle il nous manque un petit rectangle : *OKBJ*.

Mais, lui, son aire est trop facile : $4 \times 6 cm^2$.

On arrive bien à un total de $164 cm^2$.

LYCEE CHARLEMAGNE

M.P.S.I.2

2024
IS21
39- points