« Chacun sait en effet que la ligne droite ne peut être le plus court chemin d'un point à un autre. Sauf, évidemment, si les deux points sont bien en face l'un de l'autre. » Pierre Desproges

Comtesse du Canard Enchaîné :

On l'a trop gâté à la taule. Ce jus sent le coing. Faut il évacuer l'élu ? Train de Puteaux. Les cheminots doutent des gares. Ce viticulteur a vu éclater bien des fûts. On observe des bruits en tas. Ce climat trop chaud c'est à Thonon ? La dessinatrice quête des maquettes. Cette Buzin n'arrête pas de péter.

Gérard Durand Gérant du Rare (spécialiste des palindromes) :

Mon Edmond, rare génie, venu à Noël à Segré, va, ... râpé par Luc, reçu, sa sale ! On a une veine, Gérard, nom de nom !

Question de cours:

Soit f continue de \mathbb{R} dans \mathbb{R} et Ω un ouvert de \mathbb{R} (rappeler la définition).

Montrez que $\{x \in \mathbb{R} \mid f(x) \in \Omega\}$ est encore un ouvert.

Montrez que si Ω est un intervalle ouvert, $\{x \in \mathbb{R} \mid f(x) \in \Omega\}$ n'est plus forcément un intervalle ouvert.

Montrez que si Ω est ouvert, $\{f(x) \mid x \in \Omega\}$ n'est plus forcément un ouvert (prenez par exemple $f = \sin$).

Petit exercice d'analyse:

Résolvez dans $\mathbb{R} \sqrt{x^2 - 5 \cdot x + 4} \geqslant |2 \cdot x + 1|$.

Résolvez dans \mathbb{R} $\sqrt{x^2 - 5 \cdot x + 4} \ge 2 \cdot x + 1$.

Petit exercice d'arithmétique et calcul:

a, b et n sont des entiers naturels. Vrai ou faux : si $a = b \mod n$ alors $a^n = b^n \mod n$.

Petit exercice d'algèbre:

Dans l'espace vectoriel (E, +, .), on a trois sous-espaces vectoriels A, B et C vérifiant $A \subset B \cup C$ (oui, réunion, pas somme).

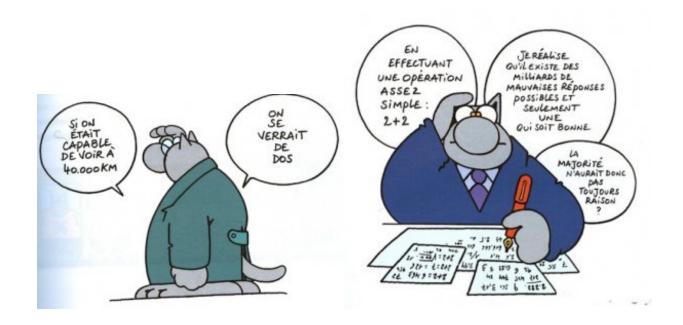
Montrez $A \subset B$ ou $A \subset C$.

Un nombre sur divisible est un nombre « divisible par le nombre de ses diviseurs ».

Montrez que n (impair) est sur divisible si et seulement si 2.n l'est aussi.

A suivre..

Rappel des règles : sur chaque ligne et	sur chaque colonne, il y a chacun des cinq entiers 1, 2, 3, 4et 5.
Et il des signes « plus grand que » et « plu	s petit que » ; bien entendu, ils doivent être corrects.
\wedge \longrightarrow \wedge	
$igspace{ igg igg > igg 3 } \wedge igg igg < igg 2 igg $	$oxed{2}>oxed{1}$
$igcircle igcup_{ee} > oxed{2} > oxed{1}$	et < >
	\bigcirc < \bigcirc < \bigcirc < \bigcirc



Question de cours:

Donnez deux matrices qui ont le même polynôme caractéristique mais ne sont pas semblables, en taille 2 puis en taille 3.

Rappelons que le seul sens vrai est « semblables implique même polynôme caractéristique ».

Sincèrement, qu'à l'issue de vos études vous soyez incapable de diagonaliser une matrice, de calculer la trajectoire d'un électron soumis à une force électromagnétique ou de décomposer un torseur antisymétrique, on s'en fout. Royalement. Mais que vous ne soyez pas capable de comprendre la différence entre « il faut » et « il suffit », et c'est foutu, vous allez faire perdre des milliers d'euros à votre entreprise et mettre la vie des gens en danger. C('est tout ce que j'avais à dire...

La seule solution à notre niveau pour montrer que deux matrices A et B de même format sont semblables est de trouver P inversible vérifiant A.P = P.B. Ou d'utiliser la transitivité de la relation « être semblable à ».

On peut proposer $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Même trace, même déterminant, même polynôme caractéristique, même spectre (la valeur double 0), mais pas semblables $(qui\ \grave{a}\ part \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right)\ est\ semblable\ \grave{a}\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right)\ ?).$

Mots clefs: valeur propre double

Petit exercice d'analyse:

On définit : $f = x \mapsto [x] \cdot \sin(\pi x)$. Montrez que f est continue sur \mathbb{R} .

Montrez que l'équation $\int_{a}^{x} f(t).dt = 0$ a une solution entre 3 et 4.

L'application est continue en tout point d'un intervalle du type]n, n+1[(ouvert), car elle y est de la forme $x \mapsto n \cdot \sin(\pi \cdot x)$.

Les seuls points posant problème sont donc les entiers relatifs n de \mathbb{Z} .

Comme c'est une définition avec une partie entière, il est judicieux de regarder à droite et à gauche.

intervalle]n-1, n[n]n, n+1[
fonction	$(n-1).\sin(\pi x)$	0	$n.\sin(\pi.x)$	1
limite en n	à gauche: 0	0	0 à droite	

Les deux limites latérales coïncident avec la valeur de la fonction. Elle est continue aussi en n de \mathbb{Z} .

Maintenant qu'elle est continue sur un intervalle tel que [3, 4], on va appliquer le théorème des valeurs intermédiaires.

On découpe donc l'intégrale par relation de Chasles:

$\int_{0}^{1} f(t).dt = \int_{0}^{1} 0.dt$	$\int_{1}^{2} f(t).dt = \int_{1}^{2} \sin(\pi t).dt$	$\int_{2}^{3} f(t).dt = \int_{2}^{3} 2.\sin(\pi . t).dt$	$\int_{23}^{4} f(t).dt = \int_{3}^{4} 3.\sin(\pi . t).dt$
0	$\frac{-2}{\pi}$	4 - π	$\frac{-6}{\pi}$
		$f(3) = \frac{4}{\pi} - \frac{2}{\pi} \geqslant 0$	$f(4) = \frac{4}{\pi} - \frac{2}{\pi} - \frac{6}{\pi} \leqslant 0$

Et encore une fois, un bon tableau vaut mieux qu'un con discours.

Si vous vous contentez de dire « oui, j'ai le bon argument », vous n'avez pas l'esprit à réussir aux concours.

Si vous vous demandez « ai je rendu la chose claire et compréhensible », vous avez l'esprit ingénieur...

Mots clefs: limite à droite et à gauche, relation de Chasles, théorème des valeurs intermédiaires.

^{1.} Oui, un tableau, c'est plus lisible que des formules partout que l'on ne relie pas entre elles au premier coup d'œil et qui s'étalent sur des lignes et des lignes ; y'a écrit « maths », donc on ne calcule pas, on communique.

Petit exercice d'arithmétique et calcul:

Résolvez le système $\begin{cases} 8^x = 10.y \\ 2^x = 5.y \end{cases}$ d'inconnues réelles x et y.

x et y ont le droit d'être réels, et y est même strictement positif.

On Raisonne par équivalences en effectuant le quotient des deux lignes et en en gardant une 2 :

$$\left\{ \begin{array}{ccc} 8^x & = & 10.y \\ 2^x & = & 5.y \end{array} \right| \Leftrightarrow \left\{ \begin{array}{ccc} 8^x/2^x & = & 2 \\ 2^x & = & 5.y \end{array} \right| \Leftrightarrow \left\{ \begin{array}{ccc} 4^x & = & 2 \\ 2^x & = & 5.y \end{array} \right|$$

On résout la première : x vaut $\frac{1}{2}$ et on reporte dans la seconde : y vaut $\frac{\sqrt{2}}{5}$.

La conclusion attendue n'est pas un nombre ici et un nombre là mais $S_{(x,y)} = \left\{ \left(\frac{1}{2}, \frac{\sqrt{2}}{5} \right) \right\}$ un seul élément, un couple.

Mots clefs : équivalences.

Petit exercice d'algèbre:

Pouvez vous trouver deux matrices A et B de taille 2 sur 2 telles que les spectres soient

A	В	A+B	A	В	A+B	A	B	A + B	(trois evercices)
$\{1, 3\}$	$\{1, 5\}$	$\{4, 6\}$	$\{1, 3\}$	$\{2, 5\}$	[1, 4]	$\{0, 3\}$	$\{2, 5\}$	$\{4, 6\}$	(trois exercices)

Les matrices de spectre $\{1, 3\}$ sont diagonalisables (deux valeurs propres distinctes, chaque valeur propre apporte un vecteur propre, on a deux vecteurs propres indépendants, donc une matrice de passage). Elles sont donc de la forme P. $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$. P^{-1} , avec en particulier $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ et $\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$.

On raisonnement de même pour « spectre $\{1, 5\}$ », avec cette fois les Q. $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$. Q^{-1} et en particulier

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 5 \end{array}\right) \text{ et } \left(\begin{array}{cc} 5 & 0 \\ 0 & 1 \end{array}\right).$$

On tient une solution facile : $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$

$\left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array}\right)$	$+\left(\begin{array}{cc}5&0\\0&1\end{array}\right)$	=	$\left(\begin{array}{cc} 6 & 0 \\ 0 & 4 \end{array}\right)$
spectre $\{1,3\}$	{5, 1}		$\{6, 4\}$

On peut ensuite cacher les choses avec $P.\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}.P^{-1} + P.\begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix}.P^{-1} = P.\begin{pmatrix} 6 & 0 \\ 0 & 4 \end{pmatrix}.P^{-1}$

Ça, c'est l'art du « poseur d'exercices ».

Pour le triplet $A B A + B \over \{1, 3\} \{2, 5\} \{1, 4\}$, la même idée ne convient plus.

D'ailleurs, aucune idée ne convient. Et c'est rapide. Regardez la trace

	$_{ m matrice}$	A	B	A + B
•	$_{ m spectre}$	$\{1, 3\}$	$\{2, 5\}$	$\{1, 4\}$
	trace	4	7	5

On n'a pas Tr(A+B) = Tr(A) + Tr(B). Le problème n'a pas de solution.

La même idée avec	\overline{A}	В	A + B	9
La meme idee avec	$\{0, 3\}$	$\{2, 5\}$	$\{4, 6\}$]

$_{ m matrice}$	A	B	A + B	
spectre	$\{0, 3\}$	$\{2, 5\}$	$\{6, 4\}$	c'est incohérent. Mais ça ne prouve pas qu'il y a une solution 3.
trace	3	7	10	

Il faut vraiment construire une solution.

^{2.} tout le gain de ces exercices sera pour vous de comprendre que vous devez raisonner par équivalences et non balancer des formules les unes à la suite des autres ; la partie calcul n'est qu'accessoire.

^{3.} Point important à nouveau : montrer qu'il n'y a pas d'incohérence ne montre pas qu'il y a une solution, on est d'accord ! L'incohérence peut être ailleurs. On raisonne !

0 3 0 0 2 0 5 0 Cette fois, ce n'est pas avec des jeux sur qu'on trouve une solution. 0 8 0 5 5 8 0 5 0 2

Il faut jouer sur P. $\begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix}$. P^{-1} et Q. $\begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}$. Q^{-1} . Ou sur Q^{-1} . P. $\begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix}$. P^{-1} . Q et $\begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}$.

On va donc prendre une matrice R inversible, et poser $A = R \cdot \begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix} \cdot R^{-1}$ avec R inversible et $B = \left(\begin{array}{cc} 5 & 0 \\ 0 & 2 \end{array}\right).$

	$\operatorname{matrice}$	trace	déterminant	polynôme caractéristique	$\operatorname{spectre}$
Par construction,	$A = R. \left(\begin{array}{cc} 0 & 0 \\ 0 & 3 \end{array} \right) . R^{-1}$	3	0	$X^2 - 3.X$	{0, 3}
	$B = \left(\begin{array}{cc} 5 & 0 \\ 0 & 2 \end{array}\right)$	7	10	$X^2 - 7.X + 10$	{2, 5}
	A + B	10	?	$X^2 - 10.X + ?$	$\{4, 6\}$

La condition nécessaire et suffisante est det(A + B) = 24.

Si on n'arrive pas à avoir ça ! Prenons même R assez simple pour commencer : $\begin{pmatrix} 1 & 1 \\ a & b \end{pmatrix}$.

 $\text{Le calcul } \text{``a` la main "} \text{`donne } A+B = \frac{1}{b-a}.\left(\begin{array}{cc} 8.a-5.b & -3.a \\ 3.b & 2.a-5.b \end{array} \right).$

On effectue : $\det(A+B)=\frac{16.a-25.b}{a-b}$. C'est faisable, avec a=1 et b=8 par exemple.

	$\operatorname{matrice}$	trace	${ m d\'eterminant}$	polynôme caractéristique	$_{ m spectre}$
	$A = \frac{1}{3} \cdot \left(\begin{array}{cc} 1 & -1 \\ -8 & 8 \end{array} \right)$	3	0	$X^2 - 3.X$	{0, 3}
On résume :	$B = \left(\begin{array}{cc} 5 & 0 \\ 0 & 2 \end{array}\right)$	7	10	$X^2 - 7.X + 10$	{2, 5}
	$A + B = \frac{1}{3} \cdot \left(\begin{array}{cc} 16 & -1 \\ -8 & 14 \end{array} \right)$	10	24	$X^2 - 10.X + 24$	{4, 6}

D'autres réponses sont possibles.

Rappel des règles : Mettre dans le grille tous les entiers de 1 à 9 (certains sont déjà placés) pour que

les trois	addition	s en lign	ie et e	en colonn	e sore	nt corre	ctes :			
1	8	2	=	11		8	7	3	=	18
5	6	3	=	14		9	4	2	=	15
7	9	4	=	20	et	6	5	1	=	12
=	=	=				=	=	=		
13	23	. 9				23	16	. 6		

Un nombre sur divisible est un nombre « divisible par le nombre de ses diviseurs »

Il est temps d'écrire un résultat important:

Quand on connaît la décomposition d'un entier en produit de facteurs premiers, on connaît son nombre de diviseurs.

Prenons un exemple : $n = 2^3.3^2.7^3$ a (1+3).(1+2).(1+3) diviseurs.

ce sont les $2^a.3^b.7^c$ avec $0\leqslant a\leqslant 3,\ 0\leqslant b\leqslant 2$ et $0\leqslant c\leqslant 3.$

	2^a	3^b	7^c
	1	1	1
•	2	9	7

Pour ma part je les vois ainsi

Choisissez un nombre par colonne, multipliez, et vous avez

	2^a	3^b	7^c	
un diviseur		1		ici 2.1.49.
	2			
			49	

Autre exemple : diviseurs de $2^2 \cdot 3 \cdot 7^3 \cdot 11 \cdot 13^2$

	2^a	3^b	7^c	11^d	13^e
	1	1	1	1	1
:	2	3	7	11	13
	2^{2}		7^2		13^{3}
			7^{3}		

il y en a 3.2.4.2.3 (nombre pair soit

dit en passant).

Le fait que ce soit $NDiv = \prod_{i=1}^{d} (1 + \alpha_i)$ se justifie par ce dénombrement. Le « 1+ » se comprend car on peut commencer à l'exposant 0.

Ce résultat général étant établi, prenons un nombre sur-divisible impair, qu'on écrit $(p_1)^{\alpha_1}.(p_2)^{\alpha_2}...(p_r)^{\alpha_r}$. Il a $NDiv = (1 + \alpha_1).(1 + \alpha_2)...(1 = \alpha_r)$ diviseurs.

Étant sur-divisible, il est divisible par ce nombre de diviseurs NDiv.

Comme n est impair, NDiv est donc aussi impair. C'est donc que tous les $(1 + \alpha_i)$ sont impairs.

Et donc tous les α_i sont pairs.

Mais alors si tous les exposants sont pairs, notre nombre est un carré parfait!

$$n = (p_1)^{\alpha_1} \cdot (p_2)^{\alpha_2} \cdot \dots \cdot (p_r)^{\alpha_r} = (p_1)^{2 \cdot \beta_1} \cdot (p_2)^{2 \cdot \beta_2} \cdot \dots \cdot (p_r)^{2 \cdot \beta_r} = \left((p_1)^{\beta_1} \cdot (p_2)^{\beta_2} \cdot \dots \cdot (p_r)^{\beta_r} \right)^2.$$

Par exemple, $3^7.5^6.7^8$ ne peut pas être sur-divisible, puisque son nombre de diviseurs est 8.7.9 et ne peut diviser $3^7.5^6.7^8$.