Programme de colle : S8 1/1

Programme de colle du 17/11 au 21/11 (S8)

M2: Dynamique

- Lois de Newton : point matériel et masse, quantité de mouvement, trois lois de Newton. Théorème de la résultante cinétique pour le solide.
- Forces usuelles. Actions à distance : interaction gravitationnelle, interaction électromagnétique (loi de Coulomb, force de Lorentz). Actions de contact : tension d'un fil, force de rappel d'un ressort, force de contact avec un solide (composante normale et composante tangentielle), forces de frottements fluides (linéaires, quadratiques), poussée d'Archimède.
- Plan de résolution d'un problème de mécanique.
- Exemples : lancer d'un ballon de basket, pendule simple, oscillateur harmonique (masse + ressort)
- Résolution numérique d'une équation différentielle du 1er ordre avec la méthode d'Euler, d'un ordre supérieur en utilisant la fonction odeint de la bibliothèque numpy.

M3 : Énergétique

Attention, seul le début du chapitre est au programme : calcul de puissances et de travaux de forces, application du théorème de la puissance cinétique et théorème de l'énergie cinétique.

- Puissance d'une force, force motrice, force résistante, travail élémentaire d'une force, travail sur un déplacement fini, énergie cinétique,
- $\bullet\,$ Théorèmes de la puis sance cinétique, de l'énergie cinétique.

Extrait du programme :

Quantité de mouvement	
Masse d'un système. Conservation de la masse pour système fermé.	Exploiter la conservation de la masse pour un système fermé.
Quantité de mouvement d'un point et d'un système de points. Lien avec la vitesse du centre de masse d'un système fermé.	Établir l'expression de la quantité de mouvement pour un système de deux points sous la forme : p=mv(G).
Première loi de Newton : principe d'inertie. Référentiels galiléens.	Décrire le mouvement relatif de deux référentiels galiléens.
Notion de force. Troisième loi de Newton.	Établir un bilan des forces sur un système ou sur plusieurs systèmes en interaction et en rendre compte sur un schéma.
Deuxième loi de Newton.	Déterminer les équations du mouvement d'un point matériel ou du centre de masse d'un système fermé dans un référentiel galiléen.
	Mettre en œuvre un protocole expérimental permettant d'étudier une loi de force par exemple à l'aide d'un microcontrôleur.
Force de gravitation. Modèle du champ de pesanteur uniforme au voisinage de la surface d'une planète. Mouvement dans le champ de pesanteur uniforme.	Etudier le mouvement d'un système modélisé par un point matériel dans un champ de pesanteur uniforme en l'absence de frottement.
Modèles d'une force de frottement fluide. Influence de la résistance de l'air sur un mouvement de chute.	Exploiter, sans la résoudre analytiquement, une équation différentielle : analyse en ordres de grandeur, détermination de la vitesse limite, utilisation des résultats obtenus par simulation numérique. Écrire une équation adimensionnée.
	Mettre en œuvre un protocole expérimental de mesure de frottements fluides.
Tension d'un fil. Pendule simple.	Établir l'équation du mouvement du pendule simple. Justifier l'analogie avec l'oscillateur harmonique dans le cadre de l'approximation linéaire.
Notions et contenus	Capacités exigibles
2.3. Approche énergétique du mouvement d'un	n point matériel
Puissance, travail et énergie cinétique Puissance et travail d'une force dans un référentiel.	Reconnaître le caractère moteur ou résistant d'une force.
Théorèmes de l'énergie cinétique et de la puissance cinétique dans un référentiel galiléen, dans le cas d'un système modélisé par un point matériel.	Utiliser le théorème approprié en fonction du contexte.

MPSI2 - Lycée Chateaubriand 2025-2026