Colle Physique-Chimie

MPSI2 2025-2026

Programme de colle semaine du 21/11

Attention, ce programme est donné à titre indicatif et peut donc être non exhaustif. Tout ce qui a été vu en cours et en TP sur les chapitres concernés est au programme de la colle. Le programme est disponible ici :

https://cahier-de-prepa.fr/mpsi2-janson/docs?Physique

Chap 6. Oscillateurs harmonique et amorti

NB colleurs : l'exemple vu en cours est le circuit RLC série. Tout exercice sur les oscillateurs dans un domaine autre que l'électrocinétique doit nécessiter un peu d'aide.

1 L'oscillateur harmonique

- Connaître l'équation différentielle d'un oscillateur harmonique et savoir la mettre sous forme canonique.
- Savoir expliquer qualitativement pourquoi la solution oscille autour de la valeur d'équilibre.
- Savoir résoudre l'équation différentielle et tracer les courbes correspondantes.
- Connaître le vocabulaire associé (pulsation propre, amplitude, phase à l'origine,...).
- Savoir déterminer graphiquement un retard ou une avance de phase.

2 L'oscillateur amorti

- Savoir que l'élément dissipatif intervient comme un terme d'ordre 1 dans l'équation différentielle.
- Savoir mettre une équation différentielle du second ordre sous forme canonique en faisant intervenir le facteur de qualité Q et la pulsation propre ω_0 .
- Savoir résoudre cette équation différentielle dans les trois cas (apériodique, pseudo-périodique et critique).
- Savoir tracer les courbes pour les trois régimes.
- Savoir utiliser la pseudo-pulsation $\Omega = \omega_0 \sqrt{\left|1 \frac{1}{4Q^2}\right|}$ et le facteur d'amortissement $\lambda = \frac{\omega_0}{2Q}$.
- Savoir définir le régime permanent à l'aide tu temps de réponse à 5% et connaître sa dépendance en ω_0 et Q pour les différents régimes.
- Savoir qu'en régime permanent, seule la solution particulière subsiste.
- Savoir démontrer que le facteur de qualité permet d'avoir un ordre de grandeur du nombre d'oscillations visibles (N) dans le cas du régime pseudo-périodique ($N \simeq Q$).

Chap 7. Propagation d'un signal et interférences

1 Ondes et signaux physiques

- Savoir faire la différence entre un signal et une onde et connaître quelques exemples.
- Savoir définir une onde transversale et longitudinale.
- Savoir définit une onde mécanique.
- Savoir définir un signal périodique et un signal sinusoïdal (amplitude, période, pulsation, fréquence, phase à l'origine).
- Connaître quelques ordres de grandeur de fréquence (EDF, radio, portable, lumière visible).
- Savoir que tout signal périodique peut s'écrire comme une somme de signaux sinusoïdaux (décomposition en série de Fourier).
- Savoir tracer un spectre en amplitude (la décomposition en série de Fourier étant fournie) et en phase.

2 Ondes progressives unidimensionnelles

- Savoir définir une onde progressive unidimensionnelle s(x,t).
- Connaître la valeur de la célérité du son dans l'air et dans l'eau.
- Savoir relier le signal en un x et t quelconques avec le signal en un point ou à un temps particulier.
- Savoir qu'une onde progressive unidimensionnelle se met sous la forme $s(x,t) = f(x \pm ct) = g(t \pm x/c)$ et savoir choisir le signe en fonction du sens de propagation.
- Savoir qu'une onde progressive sinusoïdale se met sous la forme $s(x,t) = s_m \cos(\omega t \pm kx + \phi)$
- Savoir définir chaque terme de s(x,t) et connaître les relations liant k, ω , c λ et f.

3 Sommation de deux ondes progressives de même fréquence

- Savoir utiliser la notation en $\cos(\omega t kr + \varphi)$ ou $\cos(\omega t \pm kx + \varphi)$
- Savoir définir la phase $\phi(M,t) = \omega t kr + \varphi = \omega t + \psi(M)$.
- Savoir adapter l'expression de la phase dans le cas où le trajet n'est pas rectiligne ou si le milieu n'est pas le même partout.
- Savoir définir deux sources synchrones ($\omega_1 = \omega_2$) et en phase ($\varphi_1 = \varphi_2$).
- Savoir expliquer le principe de la méthode de Fresnel.
- Savoir expliquer pourquoi le signal somme peut s'écrire sous la forme $s(M,t) = A(M)\cos(\omega t + \psi(M))$.
- Savoir déterminer l'amplitude du signal somme en utilisant le diagramme de Fresnel.

4 Intensité du phénomène d'interférence

- Savoir expliquer simplement pourquoi les détecteurs sont sensibles à < s² >.
- Connaître la définition de l'intensité $I = \alpha A^2 = 2\alpha < s^2 >$ (où α est une constante positive dépendant du type d'onde et du capteur).
- Savoir démontrer, à l'aide de la méthode de Fresnel, la relation $I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\Delta \varphi)$ et penser à utiliser son expression simplifiée $I = 2 I_0 (1 + \cos{(\Delta \varphi)})$ lorsque les sources ont même intensité
- Savoir écrire les conditions d'interférences constructives et destructives à l'aide du déphasage et les intensités correspondantes.

5 Figure d'interférences

- Savoir définir la différence de marche δ (dans le cas synchrone, sources en phase et milieu uniforme) et l'ordre d'interférence p.
- Savoir démontrer que les interférences constructives ont lieu lorsque l'ordre d'interférence est un entier et que les interférences destructives ont lieu lorsque l'ordre d'interférence est un demi-entier.
- Savoir expliquer l'expérience des fentes de Young (montage, diffraction par les fentes, zone d'interférence,...).
- Savoir faire le calcul de la différence de marche en maîtrisant les approximations successives.
- Savoir tracer l'intensité sur l'écran en fonction de la position.
- Savoir décrire la figure d'interférence et connaître la notion de frange sombre et brillante.
- Savoir définir et déterminer l'interfrange i.