Lycée Kérichen MPSI 2 2013-2014

Thermodynamique TD 2 Premier principe, bilans d'énergie.

Exercice 1 : Capacité thermique dépendant de la température :

On échauffe deux moles d'eau sous forme gazeuse dans un récipient fermé de volume constant de 273 K à 573 K.

Quelle quantité de chaleur faut-il apporter ? On donne C_p ($H_2O_{(g)}$) = 30,54 + 0,0103 T en $J.K^{-1}.mol^{-1}$

Exercice 2: Transformation cyclique:

Un récipient de 10 L contient de l'air sous la pression de 80 cm de mercure à la température de $20^{\circ}C$. On assimile l'air à un gaz parfait dont γ = 1,4 et auquel on fait subir une suite de transformations :

- On lui fait subir une compression isotherme infiniment lente jusqu'à la pression de 800 cm de mercure.
- On ramène le gaz à sa pression initiale par une détente adiabatique infiniment lente.

<u>Données</u>: Au cours d'une transformation adiabatique, on a la relation(démontrée chapitre suivant): Pv^{v} = cste

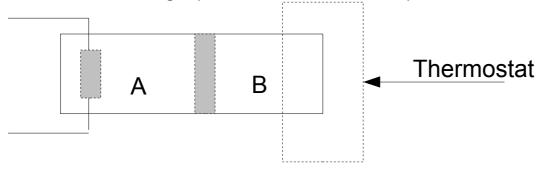
- Ce gaz est enfin ramené à son état initial par une transformation monobare.
- 1. Déterminez, pour chacune des transformations, la valeur des variables d'état dans l'état d'équilibre final (P_f, T_f, V_f) , la valeur des transferts d'énergie avec le milieu extérieur et la variation d'énergie interne du système.
- 2. Calculez la somme des transferts énergétiques pour la transformation totale. Conclusion ?

Exercice 3 : Remplissage d'un récipient initialement vide:

Soit un récipient vide de volume V_1 = 10 L dont les parois sont calorifugées. On assimile l'air constituant le milieu extérieur à un gaz parfait à la pression P_0 = 1 atm et à la température T_0 = 300 K (on prendra γ = 1,4). On ouvre une vanne dans la paroi du récipient. L'air y pénètre très rapidement. On referme la vanne lorsque l'équilibre des pressions est réalisé.

- 1. Définissez le système sur lequel vous travaillez.
- 2. Déterminez la variation d'énergie interne du système choisi à la première question ainsi que la température du gaz à l'intérieur du récipient.

Exercice 4 : Calorimétrie :


- 1. Un calorimètre contient 95,0 g d'eau à 20,0°C. On y ajoute 71,0 g d'eau à 50,0°C.
 - a) Quelle est la variation d'enthalpie du système (calorimètre, accessoires, deux volumes d'eau)?
 - b) Quelle serait la température d'équilibre si on pouvait négliger la capacité thermique du calorimètre et de ses accessoires devant celle de l'eau?
 - c) La température d'équilibre observée est 31,3°C. Déduisez-en la « valeur en eau » du calorimètre et de ses accessoires.
 - Définition : Valeur en eau du calorimètre : c'est la masse d'eau qui aurait la même capacité thermique que le calorimètre et ses accessoires.
- 2. Le même calorimètre contient maintenant 100,0 g d'eau à 15,0°C. On y plonge un échantillon de métal de masse 25,0 g sortant de l'étuve à 95,0°C. La température d'équilibre étant de 16,7°C, calculez la capacité thermique

massique du métal. Pour l'eau : $c_0 = 4,18 \text{ J}.q^{-1} \text{ K}^{-1}$

3. Le même calorimètre contient une masse m_0 d'eau à la température T_0 . A l'intérieur, on place une résistance R dans laquelle on fait passer un courant I constant. La résistance R varie avec la température suivant la loi $R = R_0(1 + aT)$ avec R_0 et a constantes. A t = 0, on allume l'alimentation de la résistance. Déterminez l'expression de la température de l'eau en fonction du temps.

Exercice 5: Transfert thermique:

Un cylindre fermé horizontal est divisé en deux compartiments A et B, initialement de même volume V_0 , par un piston mobile calorifugé. Chacun des deux compartiments contient une mole de gaz parfait initialement à la température T_0 et à la pression P_0 .

Seule la paroi à l'extrémité de B est en contact avec le thermostat n'est pas calorifugée.

Le compartiment A est porté très lentement à la température T_1 à l'aide d'une résistance chauffante. Le compartiment B reste à la température T_0 grâce au contact thermique avec le thermostat.

1. Exprimez les volumes finaux V_A et V_B ainsi que la pression finale P_f en fonction de T_1 , T_0 et V_0 .

- 2. Exprimez la variation d'énergie interne du gaz contenu dans le compartiment A puis la variation d'énergie interne du gaz contenu dans le compartiment B, enfin la variation d'énergie interne du gaz contenu dans le compartiment (A+B). La résistance chauffante et le piston sont exclus du système.
- 3. Quelle est la nature de la transformation subie par le gaz en B? Quel est le travail échangé par B avec A? Déduisez-en le transfert thermique Q_1 entre le gaz en B et le thermostat. Exprimez-le en fonction de T_0 , T_1 et R (constante des gaz parfaits)
- 4. En considérant le système A, trouvez le transfert thermique Q_2 fourni par la résistance chauffante en fonction de T_0 , T_1 , R et γ .

Exercice 6: Vaporisation de l'eau:

Antoine a mis à chauffer 1 litre d'eau en vue de se cuisiner des pâtes. Mais, captivé par la série qu'il regarde, il oublie les pâtes...

- 1. Déterminez les variations d'enthalpie et d'énergie interne d'un kilogramme d'eau liquide à $100\,^{\circ}C$ que l'on vaporise sous la pression P = 1 atm. On assimilera la vapeur d'eau à un gaz parfait .
- 2. Calculez le transfert thermique nécessaire pour faire passer un litre d'eau liquide à 25 °C à l'état vapeur à 100 °C, sous une atmosphère.
- 3. Quelle serait la masse que l'on pourrait monter jusqu'au sommet de la Tour Eiffel en utilisant l'énergie déterminée question précédente? Commentaire sur l'énergie consommée inutilement par Antoine?

<u>Données</u>: pour l'eau : $l_v = 2257 \text{ kJ.kg}^{-1}$; $c_f = 4180 \text{ J.K}^{-1}.\text{kg}^{-1}$; volume molaire de la vapeur : 30.6 L.mol^{-1} à $100^{\circ}C$ sous une atm

hauteur de la Tour Eiffel: 324 m

Exercice 7: Liquéfaction du diazote par une détente de Joule-Kelvin:

On cherche à obtenir du diazote liquide à la température T_0 = 78 K pour laquelle la pression de vapeur saturante vaut P_0 = $f(T_0)$ = 1 bar. Dans la machine de Linde, on fait subir au diazote une détente isenthalpique (Joule-Kelvin) de l'état initial E_1 (P_1 , T_1 = 290 K; h_1) correspondant à du diazote gazeux comprimé vers l'état final E_2 (P_2 = 1 bar T_2 = 780 K; h_2) correspondant à un système diphasé liquide-vapeur. Il ne reste plus ensuite qu'à séparer le liquide de la vapeur.

On adopte l'expression approchée de l'enthalpie massique h du diazote gazeux en fonction de la pression P (en bar) et de la température T (en Kelvin) : $h = c_p T + b.P + k$ avec $c_p = 1,04 \text{ kJ.kg}^{-1}.K^{-1}$; $b = -1,51 \text{ kJ.kg}^{-1}.\text{bar}^{-1}$ et $k = 150 \text{ kJ.kg}^{-1}$

On donne les enthalpies massiques h_{2L} = 34 kJ.kg⁻¹ du diazote liquide et h_{2V} = 230 kJ.kg⁻¹ du diazote gazeux à la température T_2 = 78 K et à la pression de vapeur saturante P_2 = $f(T_2)$ =1 bar.

Déterminez le titre massique en vapeur x_v dans le mélange diphasé à la sortie du détendeur pour P_1 = 200 bars

Quelques résultats:

Exercice 1: $\Delta U = Q = 20.9 \text{ kJ}$

Exercice 2: 1)

transformation A=>B $T_B=20^\circ C$, $P_B=10.5$ bar, $V_B=1$ L , $\Delta U_{AB}=0$, $W_{fpAB}=2.4$ kJ = $-Q_{AB}$ transformation B=>C $T_C=151.8^\circ C$, $P_C=P_A$, $V_C=5.17$ L , $\Delta U_{BC}=W_{fpBC}=-1.27$ kJ , $Q_{BC}=0$ transformation C=>A $T_C=T_A$, $P_C=P_A$, $V_C=V_A$, $\Delta U_{CA}=1.27$ kJ , $W_{fpCA}=5.1.10^2$ J , $Q_{CA}=\Delta U_{CA}-W_{fpCA}$

2)
$$\Delta u_{tot} = \Sigma W + \Sigma Q = 0$$

Exercice 3: 2) T'₁=
$$\gamma T_0$$
; $\Delta U = \frac{P_0 V_1}{\gamma}$

Exercice 4: 1b) $T_f = 33.2^{\circ}C$; 1c) $\mu = 27.5 g$; 2c) $c = 0.46 \text{ J.g}^{-1}.\text{K}^{-1}$

3)
$$T = \frac{1}{a} [(1 + a T_0) e^{\frac{aR_0 I^2 t}{(\mu + m_0)c_0}} - 1]$$

Exercice 5: 1)
$$V_{A}$$
= $\frac{2V_{0}T_{1}}{T_{1}+T_{0}}$, V_{B} = $\frac{2V_{0}T_{0}}{T_{1}+T_{0}}$; P_{f} = $\frac{R(T_{1}+T_{0})}{2V_{0}}$ 3) $W_{A\Rightarrow B}$ = $2T_{0}$

$$-RT_0 \ln \frac{2T_0}{T_1 + T_0}$$

Exercice $7: x_v = 0,59$