FONCTIONS USUELLES

Les variables a, b, c, x, y, θ , etc. de ce chapitre sont réelles, $n \in \mathbb{N}$ et $p \in \mathbb{Z}$.

Logarithme, exponentielle et puissance

Fonction logarithme

■ Il existe une unique application dérivable ln appelée logarithme définie de \mathbb{R}_+^* dans \mathbb{R} par ces deux conditions :

$$\ln: \mathbb{R}_+^* \to \mathbb{R}$$
 $\ln 1 = 0$ $\forall x \in \mathbb{R}_+^*$ $\ln' x = 1/x$

- \diamond La théorie de l'intégration prouve que l'application $\ln: x \mapsto \int_1^x 1/t \, dt$ vérifie ces deux propositions. D'autres constructions sont possibles.
- \diamond Si les applications f et g vérifient ces propositions, alors la fonction auxiliaire f-g est de dérivée nulle sur l'intervalle \mathbb{R}_+^* donc est constante et de valeur 0 en 1. Ceci justifie l'unicité de l'application \ln :

$$(f-g)(x)' = f'(x) - g'(x) = \frac{1}{x} - \frac{1}{x} = 0$$
 $f(1) - g(1) = 0 - 0 = 0$

■ L'application ln vérifie ces propriétés pour tout $(x,y) \in \mathbb{R}_+^{*2}$:

$$\ln(xy) = \ln x + \ln y \qquad \ln(1/x) = -\ln x \qquad \ln(x^p) = p \ln x$$
$$\ln x > 0 \Longleftrightarrow x > 1 \qquad \ln x < 0 \Longleftrightarrow 0 < x < 1$$

 \Diamond La preuve de la première de ces propriétés provient de l'étude de la fonction auxilaire $f: x \mapsto \ln(xy) - \ln x$ qui est de dérivée nulle et donc constante sur \mathbb{R}_+^* ; l'application $x \mapsto \ln(xy)$ est la composée d'un produit par la constante y et de l'application logarithme :

$$f'(x) = (\ln(xy))' - (\ln x)' = y \frac{1}{xy} - \frac{1}{x} = 0$$

$$f(1) = \ln y - \ln 1 = \ln y$$

$$f(x) = \ln(xy) - \ln x = f(1) = \ln y \qquad \ln(xy) = \ln x + \ln y$$

 \diamond Cette égalité appliquée à y=1/x justifie l'identité $\ln(1/x)=-\ln x$. Une récurrence démontre la propriété sur les puissances pour $p\in\mathbb{N}$, et l'étude de l'inverse étend cette égalité à $p\in\mathbb{Z}$. Le signe de la dérivée $\ln' x = 1/x > 0$ indique les variations de ln.

- \boxtimes Si la fonction f est croissante et définie sur un voisinage de $+\infty$, et s'il existe une suite $(x_n)_{n\in\mathbb{N}}$ telle que la suite $(f(x_n))_{n\in\mathbb{N}}$ diverge vers $+\infty$, alors l'application f admet une limite infinie en $+\infty$.
- $\Diamond\,$ La première ligne correspond donc aux hypothèses, et la seconde est la propriété à prouver :

$$\lim_{n \to +\infty} f(x_n) = +\infty \quad \forall C \in \mathbb{R} \quad \exists N \in \mathbb{N} \quad \forall n \ge N \quad f(x_n) \ge C$$

$$\lim_{x \to +\infty} f(x) = +\infty \quad \forall B \in \mathbb{R} \quad \exists A \in \mathbb{R} \quad \forall x \ge A \quad f(x) \ge B$$

Soit $B \in \mathbb{R}$, l'hypothèse sur la suite appliquée à C = B justifie l'existence de $N \in \mathbb{N}$, vérifions par la croissance de l'application f que $A = x_N$ convient :

$$x \ge A = x_N$$
 $f(x) \ge f(A) = f(x_N) \ge C = B$

■ Les limites de la fonction ln sont les suivantes :

$$\lim_{x \to +\infty} \ln x = +\infty \qquad \lim_{x \to 0} \ln x = -\infty$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0 \qquad \lim_{x \to 0} x \ln x = 0$$

$$\lim_{x \to 0} x \ln x = 0$$

- \diamond Le tableau de variation prouve que ln 2 > 0, donc la limite de la suite $\ln(2^n) = n \ln 2$ est infinie; par ailleurs l'application ln est croissante. En conclusion le lemme justifie la limite infinie de l'application ln en $+\infty$.
- \Diamond La limite à droite en zéro de l'application ln se déduit de la précédente par composition des limites :

$$\lim_{x \to +\infty} \ln x = +\infty$$

$$\implies \lim_{x \to 0} \ln x = \lim_{x \to +\infty} \ln(1/x) = -\lim_{x \to +\infty} \ln x = -\infty$$

$$\xrightarrow{x \to 0}$$

- $\Diamond\,$ Le calcul de la limite de $(\ln x)/x$ peut être obtenue à partir de celle de e^x/x démontrée dans le paragraphe suivant.
- * L'application ln est strictement croissante et bijective de \mathbb{R}_+^* dans \mathbb{R} .

Application exponentielle

■ Il existe une unique application dérivable exp appelée exponentielle définie sur \mathbb{R} qui est caractérisée par ces deux conditions :

$$\exp: \mathbb{R} \to \mathbb{R}_+^*$$
 $\exp 0 = 1$ $\forall x \in \mathbb{R}$ $\exp' x = \exp x$

- L'application exp est l'application réciproque de la fonction \ln ; elle est strictement croissante et bijective de \mathbb{R} dans \mathbb{R}_{+}^{*} .
- \diamond L'application ln : $\mathbb{R}_+^* \to \mathbb{R}$ est bijective et l'application réciproque exp : $\mathbb{R} \mapsto \mathbb{R}_+^*$ vérifie bien cette équation différentielle obtenue par dérivation de l'application réciproque :

$$\exp' x = \frac{1}{\ln'(\exp x)} = \frac{1}{\frac{1}{\exp x}} = \exp x$$
$$\exp 0 = \exp(\ln 1) = 1$$

 \diamond L'unicité d'une telle application, notée f est due au fait que la fonction auxiliaire $x\mapsto f(x)/\exp x$ est de dérivée nulle, constante et de valeur 1 :

$$\left(\frac{f(x)}{\exp x}\right)' = \frac{f'(x) \exp x - f(x) \exp' x}{(\exp x)^2} = \frac{f'(x) \exp x - f(x) \exp x}{(\exp x)^2}$$
$$= \frac{(f'(x) - f(x)) \exp x}{(\exp x)^2} = 0$$
$$\frac{f(0)}{\exp 0} = \frac{1}{1} = 1$$

■ L'application exp vérifie ces propriétés :

$$\exp(x+y) = \exp x \exp y \qquad \exp(-x) = \frac{1}{\exp x}$$
$$\exp x > 0 \qquad \exp(px) = (\exp x)^p$$
$$\exp x > 1 \Longleftrightarrow x > 0 \qquad 0 < \exp x < 1 \Longleftrightarrow x < 0$$

 \Diamond La première égalité, appelée équation fonctionnelle vérifiée par l'application exp, peut être démontrée à partir des variations de la fonction auxiliaire $x\mapsto \exp(x+y)/\exp x$ constante de valeur $\exp y$:

$$\left(\frac{\exp(x+y)}{\exp x}\right)' = \frac{\exp'(x+y)\,\exp x - \exp(x+y)\,\exp' x}{(\exp x)^2} = 0$$
$$\frac{\exp(0+y)}{\exp 0} = \exp y \qquad \text{pour } x = 0$$

 \diamond L'équation fonctionnelle de l'exponentielle appliquée à y=-x justi-

fie l'égalité $\exp(-x) = 1/\exp x$. La relation sur les puissances se déduit par récurrence sur la même équation fonctionnelle.

Les variations de l'application exp proviennent de celles de l'application réciproque ln.

■ Les limites essentielles de l'application exp sont celles-ci :

$$\lim_{x \to +\infty} \exp x = +\infty \qquad \lim_{x \to -\infty} \exp x = 0$$

$$\lim_{x \to +\infty} \frac{\exp x}{x} = +\infty \qquad \lim_{x \to -\infty} x \exp x = 0$$

 \diamond Le tableau de variation de l'application exp justifie que exp 1>1. D'une part l'application exp est croissante sur $\mathbb R$ et d'autre part la suite $(\exp n)_{n\in\mathbb N}=(\exp 1)^n$ diverge vers $+\infty$. Le lemme précédent énonce donc la limite $\lim_{x\to +\infty}\exp x=+\infty$.

L'égalité $\exp(-x)=1/\exp x$ entraı̂ne alors $\lim_{x\to -\infty}\exp x=0$ par composition des limites.

 \Diamond La suite $(q^n/n)_{n\in\mathbb{N}^*}$ a été étudiée dans le chapitre sur les limites et diverge vers $+\infty$ dès que q>1, par exemple si $q=\exp 1>1$. Par ailleurs l'application $\exp x/x$ est croissante sur $[1,+\infty[$ car la dérivée est positive si $x\geq 1$. Le lemme précédent justifie donc $\lim_{x\to +\infty}(\exp x)/x=+\infty$:

$$\left(\frac{\exp x}{x}\right)' = \frac{\exp x (x-1)}{x^2} \ge 0 \quad \text{si } x \ge 1$$

La dermière limite est obtenue par composition :

$$x \exp x = \frac{x}{\exp(-x)} = -\frac{1}{\frac{\exp(-x)}{-x}}$$
 de limite $1/\infty = 0$ en $-\infty$

 \Diamond Le calcul de la limite de $\ln x\,/x$ quand x tend vers $+\infty$ se déduit de la limite précédente par composition :

$$\lim_{u \to +\infty} \frac{\exp u}{u} = +\infty \operatorname{ET} \lim_{x \to +\infty} \ln x = +\infty$$

$$\Longrightarrow \lim_{x \to +\infty} \frac{\exp(\ln x)}{\ln x} = \lim_{x \to +\infty} \frac{x}{\ln x} = +\infty$$

$$\Longrightarrow \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

La limite à droite en 0 de x ln x se déduit de la précédente car dans ce

cas 1/x tend vers $+\infty$:

$$x \ln x = -\frac{\ln(1/x)}{1/x}$$
 de limite 0 à droite en 0

★ Les applications $\ln : \mathbb{R}_+^* \to \mathbb{R}$ et $\exp : \mathbb{R} \to \mathbb{R}_+^*$ sont donc bijectives et réciproques l'une de l'autre :

$$\forall x \in \mathbb{R} \quad \ln(\exp x) = x \qquad \forall x \in \mathbb{R}_+^* \quad \exp(\ln x) = x$$

- \circ La constante de Néper e est définie par $\exp 1 = e,$ c'est-à-dire $\ln e = 1.$
- \ast Il est aussi possible de définir l'application exp à partir de ces limites :

$$\exp x = \lim_{n \to +\infty} (1 + x/n)^n \qquad \exp x = \lim_{n \to +\infty} \sum_{k=0}^n \frac{x^k}{k!}$$

Fonction puissance

- Dès que $x \in \mathbb{R}_+^*$, l'expression $x^a = \exp(a \ln x)$ généralise la définition des puissances à partir des produits pour $a \in \mathbb{Z}$ et celle des racines pour $1/a \in \mathbb{N}^*$. Ainsi $e^{-1/2} = 1/\sqrt{e}$ et $e^a = \exp(a \ln e) = \exp a$.
- La puissance vérifie ces propriétés pour tout $(x,y) \in \mathbb{R}_{+}^{*2}$:

$$x^{a}y^{a} = (xy)^{a}$$
 $x^{a}x^{b} = x^{a+b}$ $(x^{a})^{b} = x^{ab}$
 $x^{1} = x$ $x^{0} = 1$ $1^{a} = 1$ $\frac{1}{x^{a}} = x^{-a}$

 \Diamond Ces égalités proviennent directement des propriétés des exponentielles :

$$x^{a}y^{a} = \exp(a \ln x) \exp(a \ln y) = \exp(a \ln x + a \ln y)$$

$$= \exp(a(\ln x + \ln y)) = \exp(a \ln(xy)) = (xy)^{a}$$

$$x^{a}x^{b} = \exp(a \ln x) \exp(b \ln x) = \exp(a \ln x + b \ln x)$$

$$= \exp((a + b) \ln x) = x^{a+b}$$

$$x^{0} = \exp(0 \times \ln x) = \exp 0 = 1$$

$$1^{a} = \exp(a \times \ln 1) = \exp 0 = 1$$

- * Un passage à la limite en 0 justifie la convention $0^a=0$ lorsque a>0.
- \star Le sens de variation de la fonction $x \mapsto x^a$ dépend de a:

				$(x^a)' = ax^{a-1}$ sauf pour $a = 0$
a < 0	$+\infty$	$\searrow 1 \searrow$	0	cas de l'hyperbole $y = x^{-1} = 1/x$
a = 0	1	\rightarrow 1 \rightarrow	1	la fonction constante $x^0 = 1$
0 < a < 1	0	$\nearrow 1 \nearrow$	$+\infty$	de la forme de $\sqrt{x} = x^{1/2}$
a = 1	0	$\nearrow 1 \nearrow$	$+\infty$	la fonction identité $x^1 = x$
1 < a	0	$\nearrow 1 \nearrow$	$+\infty$	de la forme d'une parabole $y = x^2$

Cette application est strictement croissante pour a>0, et de dérivée nulle en 0 dès que a>1.

* L'application $x \mapsto x^a$ est appelée puissance et l'application $x \mapsto a^x$ pour a > 0 est appelée exponentielle :

$$(x^{a})' = (\exp(a \ln x))' = \frac{a}{x} \exp(a \ln x) = ax^{a-1}$$
 si $a \neq 0$
 $(a^{x})' = (\exp(x \ln a))' = \ln a \exp(a \ln x) = \ln a a^{x}$ si $a > 0$

Fonctions trigonométriques

Le chapitre trigonométrie récapitule les propriétés des fonctions sin, cos et tan; celui sur les complexes détaille les méthodes de linéarisation et de développement.

Fonctions trigonométriques réciproques

■ La restriction de l'application sin à $[-\pi/2, \pi/2]$ est strictement croissante, à valeurs dans [-1, 1] et dérivable, elle est donc bijective; l'application réciproque est notée arcsin, est dérivable sur]-1, 1[et est impaire :

$$\arcsin: [-1, 1] \longrightarrow [-\pi/2, \pi/2]$$
 $\arcsin' x = \frac{1}{\sqrt{1-x^2}} \ge 1$

■ La restriction de l'application cos à $[0, \pi]$ est strictement décroissante, à valeurs dans [-1, 1] et dérivable, elle est donc bijective; l'application réciproque est notée arccos et est dérivable sur]-1, 1[:

$$\arcsin : [-1, 1] \longrightarrow [0, \pi]$$
 $x \longmapsto \arccos x$ $\arccos' x = -\frac{1}{\sqrt{1 - x^2}} \le -1$

■ La restriction de l'application tan à $]-\pi/2$, $\pi/2[$ est strictement croissante, à valeurs dans \mathbb{R} et dérivable, elle est donc bijective ; l'ap-

plication réciproque est notée arctan, est dérivable et est impaire :

$$\arctan: \mathbb{R} \longrightarrow]-\pi/2, \, \pi/2[$$
 $x \longmapsto \arctan x$ $\arctan' x = \frac{1}{1+x^2} \in]0, \, 1]$

♦ Les dérivées de ces applications réciproques sont celles-ci :

$$\arccos' x = \frac{1}{\cos'(\arccos x)} = -\frac{1}{\sin(\arccos x)} = -\frac{1}{\sqrt{1 - \cos^2(\arccos x)}}$$

$$= -\frac{1}{\sqrt{1 - x^2}} \qquad \operatorname{car arccos} x \in]0, \pi[$$

$$\arcsin' x = \frac{1}{\sin'(\arcsin x)} = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - \sin^2(\arcsin x)}}$$

$$= \frac{1}{\sqrt{1 - x^2}} \qquad \operatorname{car arcsin} x \in]-\pi/2, \pi/2[$$

$$\arctan' x = \frac{1}{\tan'(\arctan x)} = \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}$$

 \blacksquare Les fonctions de trigonométrie réciproque vérifient ces identités : π

$$\arcsin x + \arccos x = \frac{\pi}{2}$$
 pour $x \in [-1, 1]$

$$\arctan x + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}\operatorname{sgn} x = \begin{cases} -\pi/2 & \text{si } x < 0\\ +\pi/2 & \text{si } x > 0 \end{cases} \quad \text{pour } x \in \mathbb{R}^*$$

♦ Ces égalités peuvent être établies par dérivation et valeur en un point de ces fonctions sur leurs intervalles de définition.

La première application est continue sur le segment [-1, 1] et dérivable sur]-1, 1[, et la seconde est définie sur les intervalles $]-\infty, 0[$ et $]0, +\infty[$:

$$f(x) = \arcsin x + \arccos x \qquad f(0) = \pi/2$$

$$f'(x) = \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} = 0 \qquad \text{sur }]-1, 1[$$

$$g(x) = \arctan x + \arctan(1/x) \qquad g(\pm 1) = \pm \pi/2$$

$$g'(x) = \frac{1}{1 + x^2} + \frac{-1}{x^2} \frac{1}{1 + (\frac{1}{x})^2} = \frac{1}{1 + x^2} - \frac{1}{x^2 + 1} = 0 \qquad \text{sur } \mathbb{R}^*$$

 \bigstar Ces égalités se limitent aux intervalles précisés :

$$\begin{array}{ll} \forall\,x\!\in\![-1,\,1] & \cos(\arccos x) = x \ \operatorname{ET} \,\sin(\arcsin x) = x \\ \forall\,x\!\in\![0,\,\pi] & \arccos(\cos x) = x \\ \forall\,x\!\in\![-\pi/2,\,\pi/2] & \arcsin(\sin x) = x \\ \forall\,x\!\in\!\mathbb{R} & \tan(\arctan x) = x \\ \forall\,x\!\in\![-\pi/2,\,\pi/2] & \arctan(\tan x) = x \end{array}$$

* Ces propriétés illustrent la résolution d'équations trigonométriques :

$$\tan x = a \in \mathbb{R} \text{ ET } x \in]-\pi/2, \, \pi/2[\iff x = \arctan a$$

$$\sin x = a \in [-1, \, 1] \text{ ET } x \in [-\pi/2, \, \pi/2] \iff x = \arcsin a$$

$$\cos x = a \in [-1, \, 1] \text{ ET } x \in [0, \, \pi] \iff x = \arccos a$$

* De façon immédiate l'argument θ d'un nombre complexe $z \in \mathbb{C}$ de partie réelle $x \neq 0$ et de partie imaginaire $y \in \mathbb{R}$ vérifie $\tan \theta = y/x$:

$$\arg z = \begin{cases} \arctan(y/x) & \text{si } x > 0\\ \arctan(y/x) \pm \pi & \text{si } x < 0 \text{ en fonction du signe de } y\\ \frac{\pi}{2} \operatorname{sgn} y & \text{si } x = 0 \end{cases}$$

 $\,\vartriangleright\,$ L'angle moitié permet de déterminer directement l'argument d'un nombre complexe $z\in\mathbb{C}\setminus\mathbb{R}_-$:

$$\arg z = \theta = 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right) \in]-\pi, \, \pi[$$

 \Rightarrow La méthode suivante exprime $\tan(\theta/2)$ où $\theta = \arg z$ en fonction des parties réelles et imaginaires de z.

$$x = \operatorname{re} z \quad y = \operatorname{im} z \quad \theta = \operatorname{arg} z$$

$$\cos \theta = \frac{x}{\sqrt{x^2 + y^2}} \quad \sin \theta = \frac{y}{\sqrt{x^2 + y^2}}$$

$$\tan \left(\frac{\theta}{2}\right) = \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} = \frac{\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}{\cos^2\left(\frac{\theta}{2}\right)} = \frac{\sin \theta}{\cos \theta + 1}$$

$$\operatorname{arg} z = \theta = 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right) \in]-\pi, \, \pi[$$

Cette égalité est définie par une seule formule sur $\mathbb{C}\setminus\mathbb{R}_{-}$ contrairement à la précédente qui distingue selon les signes de x et de y.

Fonctions hyperboliques

• Les fonctions de trigonométrie hyperbolique sont définies à partir de l'exponentielle par des formules comparables aux formules d'Euler :

$$\cosh x = \frac{e^x + e^{-x}}{2} \qquad \sinh x = \frac{e^x - e^{-x}}{2} \\
\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{1 - e^{-2x}}{1 + e^{-2x}} \in]-1, 1[$$

■ Les propriétés sont les suivantes :

La fonction cosh est paire; les fonctions sinh et tanh sont impaires.

★ Les propriétés de l'exponentielle complexe justifient ces égalités :
$$\sin x = -i \sinh(ix)$$
 $\cos x = \cosh(ix)$ $\tan x = -i \tanh(ix)$ $\sinh x = -i \sin(ix)$ $\cosh x = \cos(ix)$ $\tanh x = -i \tan(ix)$

 \Diamond Le chapitre sur les nombres complexes énonce sans les démontrer les propriétés de l'exponentielle complexe. Elles sont appliquées ici associée aux égalités $i^2=-1$ et 1/i=-i:

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i} = -i \frac{e^{ix} - e^{-ix}}{2} = -i \sinh(ix)$$
$$\cosh x = \frac{e^x + e^{-x}}{2} = \frac{e^{-i(ix)} + e^{i(ix)}}{2} = \cos(ix)$$

 $\ast\,$ Ces égalités permettent en particulier d'énoncer les identités remarquables de trigonométrie hyperbolique :

$$\cos^{2} x + \sin^{2} x = 1 \qquad \qquad \cosh^{2} x - \sinh^{2} x = 1$$

$$\sin(2x) = 2 \sin x \cos x \qquad \qquad \sinh(2x) = 2 \sinh x \cosh x$$

$$\cos(2x) = 2 \cos^{2} x - 1 \qquad \qquad \cosh(2x) = 2 \cosh^{2} x - 1$$

$$= \cos^{2} x - \sin^{2} x \qquad \qquad = \cosh^{2} x + \sinh^{2} x$$

$$= 1 - 2 \sin^{2} x \qquad \qquad = 1 + 2 \sinh^{2} x$$

$$\tan(2x) = \frac{2 \tan x}{1 - \tan^{2} x} \qquad \tanh(2x) = \frac{2 \tanh x}{1 + \tanh^{2} x}$$

Une autre démonstration possible consiste a remplacer les fonctions de trigonométrie hyperbolique par leur définition en $e^{\pm x}$.

 \triangleright L'expression des fonctions trigonométriques sin x, cos x et tan x sous la forme de fractions rationnelles dépendant de $t=\tan(x/2)$ s'adapte aux fonctions hyperboliques :

$$t = \tanh\left(\frac{x}{2}\right)$$
 $\sinh x = \frac{2t}{1-t^2}$ $\cosh x = \frac{1+t^2}{1-t^2}$ $\tanh x = \frac{2t}{1+t^2}$

 \Rightarrow La démonstration commence par le développement de $\sinh(2u)$, $\cosh(2u)$ et $\tanh(2u)$:

$$\sinh(2u) = -i \sin(2iu) = -2i \sin(iu) \cos(iu) = 2 \sinh u \cosh u$$

$$\cosh(2u) = \cos(2iu) = \cos^2(iu) - \sin^2(iu)$$

$$= \cosh^2 u - i^2 \sinh^2 u = \cosh^2 u + \sinh^2 u$$

$$\tanh(2u) = \frac{\sinh(2u)}{\cosh(2u)} = \frac{\frac{2 \sinh u \cosh u}{\cosh^2 u + \sinh^2 u}}{\frac{\cosh^2 u + \sinh^2 u}{\cosh^2 u}} = \frac{2 \tanh u \cosh u}{1 + \tanh^2 u}$$

$$\tanh x = \frac{2t}{1 + t^2}$$

$$1 - \tanh^2 u = 1 - \frac{\sinh^2 u}{\cosh^2 u} = \frac{\cosh^2 u - \sinh^2 u}{\cosh^2 u} = \frac{1}{\cosh^2 u}$$

$$\cosh^2 u = \frac{1}{1 - \tanh^2 u}$$

$$\cosh^2 u = \frac{1}{1 - \tanh^2 u}$$

$$\cosh x = \frac{2}{1 - t^2} - 1 = \frac{1 + t^2}{1 - t^2}$$

$$\sinh x = \tanh x \cosh x = \frac{2t}{1 - t^2} \frac{1 - t^2}{1 + t^2} = \frac{2t}{1 + t^2}$$

 \ast Ces égalités sont comparables, aux signes près, à celles obtenues pour les fonctions trigonométriques.

Tableau récapitulatif des dérivées

■ Ce formulaire récapitule les dérivées des fonctions usuelles :

The formulaire recapitule less derivees des fonctions usuelles:
$$a' = 0 \quad \text{où } a \in \mathbb{R} \text{ représente l'application constante}$$

$$x' = (x^1)' = 1$$

$$\ln' x = \frac{1}{x} \qquad \qquad \text{sur } \mathbb{R}^+_+$$

$$\exp' x = (e^x)' = \exp x \qquad \qquad \text{sur } \mathbb{R}$$

$$(x^0)' = 1' = 0$$

$$(x^a)' = a x^{a-1} \qquad \text{sur } \mathbb{R} \text{ ou } \mathbb{R}^* \text{ pour } a \in \mathbb{N}^* \text{ ou } a \in \mathbb{Z}^*_-$$

$$\text{sur } \mathbb{R}_+ \text{ ou } \mathbb{R}^*_+ \text{ pour } a \geq 1 \text{ ou } a < 1$$

$$(a^x)' = \ln a \, a^x \qquad \qquad \text{pour } a > 0 \text{ et } x \in \mathbb{R}$$

$$\sin' x = \cos x \qquad \qquad \text{sur } \mathbb{R}$$

$$\cos' x = -\sin x \qquad \qquad \text{sur } \mathbb{R}$$

$$\tan' x = 1 + \tan^2 x = \frac{1}{\cos^2 x} \qquad \text{pour } x \notin \pi/2 + \pi\mathbb{Z}$$

$$\sinh' x = \cosh x \qquad \qquad \text{sur } \mathbb{R}$$

$$\cosh' x = \sinh x \qquad \qquad \text{sur } \mathbb{R}$$

$$\tanh' x = 1 - \tanh^2 x = \frac{1}{\cosh^2 x} \qquad \qquad \text{sur } \mathbb{R}$$

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}} \qquad \qquad \text{sur } \mathbb{R}$$

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}} \qquad \qquad \text{sur } \mathbb{R}$$

$$\arccos' x = -\frac{1}{\sqrt{1 - x^2}} \qquad \qquad \text{sur } \mathbb{R}$$

$$\arctan' x = \frac{1}{1 + x^2} \qquad \qquad \text{sur } \mathbb{R}$$

Tableau récapitulatif des limites usuelles

■ Les études des fonctions usuelles prouvent ces limites si a > 1 et b > 0:

$$\begin{split} +\infty &= \lim_{x \to +\infty} \sinh x = \lim_{x \to +\infty} \cosh x \\ &= \lim_{x \to +\infty} a^x = \lim_{x \to +\infty} x^b = \lim_{x \to +\infty} \ln x = \lim_{x \to +\infty} \frac{e^x}{x} \\ 0 &= \lim_{\substack{x \to 0 \\ x > 0}} x \ln x = \lim_{\substack{x \to 0 \\ x > 0}} x^b = \lim_{\substack{x \to 0 \\ x > 0}} \frac{\ln x}{x} = \lim_{\substack{x \to +\infty \\ x > 0}} xe^x \\ \lim_{\substack{x \to \pi/2 \\ x < \pi/2}} \tan x = +\infty \qquad \lim_{\substack{x \to +\infty \\ x \to +\infty}} \arctan x = \frac{\pi}{2} \\ \lim_{x \to +\infty} \tanh x = 1 \end{split}$$

■ La définition même des dérivées énoncent ces limites :

$$1 = \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sinh x}{x} = \lim_{x \to 0} \frac{\tanh x}{x} = \lim_{x \to 1} \frac{\ln x}{x - 1}$$

$$= \lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{x \to 0} \frac{\arctan x}{x}$$

$$\frac{1}{2} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\cosh x - 1}{x^2}$$

♦ Cette limite est celle de la dérivée de la fonction ln en 1 :

$$\frac{\ln x}{x-1} = \frac{\ln x - \ln 1}{x-1}$$
 de limite $\ln' 1 = \frac{1}{1} = 1$.

- La fonction cos vérifie cette limite en $0 : \lim_{x \to 0} \frac{1 \cos x}{x^2} = \frac{1}{2}$.
- \diamond La démonstration repose sur l'encadrement de $\cos x$ démontré à l'aide de fonctions auxiliaires dans le chapitre précédent :

$$1 - \frac{x^2}{2} \le \cos x \le 1 - \frac{x^2}{2} + \frac{x^4}{24} \qquad \frac{x^2}{2} \ge 1 - \cos x \ge \frac{x^2}{2} - \frac{x^4}{24}$$

$$\frac{1}{2} - \frac{x^2}{24} \le \frac{1 - \cos x}{x^2} \le \frac{1}{2} \quad \text{par encadrement la limite commune est } \frac{1}{2}$$

Exemples de simplifications

* Les exemples suivants exploitent les principales méthodes existant pour simplifier des expressions contenant ces fonctions usuelles. L'une de ces méthodes consiste à simplifier la dérivée f' de la fonction étudiée pour exprimer f plus simplement sur chaque intervalle où elle est définie. Une autre opère des changements de variables.

⊳ L'étude d'une fonction auxiliaire montre l'égalité suivante :

$$|\arctan(\sinh x)| = \arccos\left(\frac{1}{\cosh x}\right)$$

 \Rightarrow L'application f est définie sur \mathbb{R} , continue sur \mathbb{R} , paire et dérivable sur \mathbb{R}^* ; sa dérivée est calculée sur \mathbb{R}^* :

$$\begin{split} f(x) &= |\arctan(\sinh x)| - \arccos\left(\frac{1}{\cosh x}\right) \\ \sinh(-x) &= -\sinh x \qquad \arctan(-u) = -\arctan u \qquad f(-x) = f(x) \\ f'(x) &= \frac{1}{1 + \sinh^2 x} \cosh x + \frac{1}{\sqrt{1 - \frac{1}{\cosh^2 x}}} \frac{-\sinh x}{\cosh^2 x} \quad \text{pour } x > 0 \\ &= \frac{\cosh x}{\cosh^2 x} + \frac{\cosh x}{\sqrt{\cosh^2 x - 1}} \frac{-\sinh x}{\cosh^2 x} \\ &= \frac{1}{\cosh x} - \frac{\cosh x}{|\sinh x|} \frac{\sinh x}{\cosh^2 x} = \frac{1}{\cosh x} - \frac{1}{\cosh x} = 0 \end{split}$$

L'application f est donc constante sur l'intervalle \mathbb{R}_+^* , et f est continue en 0, donc f est constante sur \mathbb{R}_+ , et par parité, f est constante sur \mathbb{R} .

En outre $f(0) = \arctan 0 - \arccos 1 = 0 - 0 = 0$. L'égalité recherchée est due au fait que l'application f est nulle sur \mathbb{R} .

 \gg La méthode de changement de variables permet aussi de prouver l'égalité précédente $|\arctan(\sinh x)| = \arccos(1/\cosh x)$, d'abord si $x \ge 0$:

$$\theta = \arctan(\sinh x) \in [0, \pi/2[\qquad \tan \theta = \sinh x > 0$$

$$0 < \cos \theta = +\sqrt{\cos^2 \theta} = \frac{1}{\sqrt{1 + \tan^2 \theta}} = \frac{1}{\sqrt{1 + \sinh^2 x}} = \frac{1}{\cosh x}$$

$$\arccos(\cos \theta) = \arccos\left(\frac{1}{\cosh x}\right)$$

$$= \theta = \arctan(\sinh x) \qquad \text{pour } x > 0$$

Un argument de parité prouve l'égalité recherchée pour $x \leq 0$.

$$ightharpoonup$$
 Preuve de $y=5$ arctan $\left(\frac{1}{7}\right)+2$ arctan $\left(\frac{3}{79}\right)=\frac{\pi}{4}$.

 \gg Cette démonstration comporte deux étapes, calculer $\tan y$ et encadrer y. la méthode est générale et s'adapte à la simplification de nombreuses expressions en arctan.

La première étape repose sur la formule d'addition de la fonction tan :

$$\tan\left(2\arctan\left(\frac{1}{7}\right)\right) = \frac{\frac{2}{7}}{1 - \frac{1}{49}} = \frac{7}{24}$$

$$\tan\left(4\arctan\left(\frac{1}{7}\right)\right) = \frac{\frac{7}{24}}{1 - \frac{49}{24^2}} = \frac{336}{527}$$

$$\tan(5\arctan(1/7)) = \frac{\frac{1}{7} + \frac{336}{527}}{1 - \frac{1}{7}\frac{336}{527}} = \frac{2879}{3353}$$

$$\tan\left(2\arctan\left(\frac{3}{79}\right)\right) = \frac{\frac{6}{79}}{1 - \frac{36}{79^2}} = \frac{237}{3116}$$

$$\tan y = \frac{\frac{2879}{3353} + \frac{237}{3116}}{1 - \frac{2879}{3353}\frac{237}{3116}} = 1 \qquad y \in \frac{\pi}{4} + \pi \mathbb{Z}$$

La seconde effectue ces encadrements :

$$0 < \frac{3}{79} < \frac{1}{7} < \frac{1}{\sqrt{3}} \Longrightarrow 0 < \arctan(3/79) < \arctan(1/7) < \frac{\pi}{6}$$

$$\Longrightarrow \begin{cases} 0 < 2 \arctan(3/79) < \frac{\pi}{3} \\ \text{ET } 0 < 5 \arctan(1/7) < \frac{5\pi}{6} \end{cases}$$

$$\Longrightarrow 0 < y < \frac{7\pi}{6} < \frac{5\pi}{4}$$

$$\Longrightarrow y \in]0, 7\pi/6[$$

La prise en compte de ces deux conditions aboutit à $y = \pi/4$:

$$y \in]0, 7\pi/6[\cap \frac{\pi}{4} + \pi \mathbb{Z}]$$

$$=]0, 7\pi/6[\cap \left\{ \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \dots, -\frac{3\pi}{4}, -\frac{7\pi}{4}, \dots \right\} = \left\{ \frac{\pi}{4} \right\}$$

⊳ Cette égalité se démontre à partir de l'exponentielle :

$$\left(\frac{1+\tanh x}{1-\tanh x}\right)^n = \frac{1+\tanh(nx)}{1-\tanh(nx)}$$

 \gg Ces fractions rationnelles s'expriment donc à l'aide de l'exponentielle :

$$\left(\frac{1+\tanh x}{1-\tanh x}\right)^n = \left(\frac{1+\frac{e^x - e^{-x}}{e^x + e^{-x}}}{1-\frac{e^x - e^{-x}}{e^x + e^{-x}}}\right)^n = \left(\frac{2e^x}{2e^{-x}}\right)^n = e^{2nx}$$

$$\frac{1+\tanh(nx)}{1-\tanh(nx)} = \frac{1+\frac{e^{nx} - e^{-nx}}{e^n + e^{-nx}}}{1-\frac{e^{nx} - e^{-nx}}{e^x + e^{-nx}}} = \frac{2e^{nx}}{2e^{-nx}} = e^{2nx}$$

▷ Ces deux expressions se simplifient successivement par récurrence :

$$\tan S_n$$
 $S_n = \sum_{k=1}^n \arctan\left(\frac{1}{2k^2}\right)$ pour $n \ge 2$

 \implies Les premières valeurs de tan S_n sont les suivantes :

$$\tan S_1 = \tan \left(\arctan\left(\frac{1}{2}\right)\right) = \frac{1}{2}$$

$$\tan S_2 = \tan \left(S_1 + \arctan\left(\frac{1}{8}\right)\right) = \frac{\frac{1}{2} + \frac{1}{8}}{1 - \frac{1}{2} \cdot \frac{1}{8}} = \frac{10}{15} = \frac{2}{3}$$

$$\tan S_3 = \tan \left(S_2 + \arctan\left(\frac{1}{18}\right)\right) = \frac{2/3 + 1/18}{1 - 2/3 \times 1/18} = \frac{39}{52} = \frac{3}{4}$$

Les égalités ci-dessous démontrent par récurrence $\tan S_n = n/(n+1)$ déjà vérifiée si $n \in \{0, 1, 2\}$:

$$\tan S_{n+1} = \frac{\tan S_n + \frac{1}{2(n+1)^2}}{1 - \tan S_n \times \frac{1}{2(n+1)^2}} = \frac{\frac{n}{n+1} + \frac{1}{2(n+1)^2}}{1 - \frac{n}{2(n+1)^3}}$$
$$= \frac{(2n(n+1)+1)(n+1)}{2(n+1)^3 - n} = \frac{(2n^2 + 2n + 1)(n+1)}{2n^3 + 6n^2 + 5n + 2}$$
$$= \frac{(n+1)(2n^2 + 2n + 1)}{(n+2)(2n^2 + 2n + 1)} = \frac{n+1}{n+2}$$

En conclusion $\tan S_n = n/(n+1)$ et $S_n \in \arctan(n/(n+1)) + \pi \mathbb{Z}$.

 \gg Ces encadrements pour $n \in \{1, 2\}$ justifient $S_n = \arctan(n/(n+1))$ pour les deux premiers termes :

$$0 \le S_1 = \arctan\left(\frac{1}{2}\right) \le \frac{\pi}{4}$$
 $0 \le S_2 - S_1 = \arctan\left(\frac{1}{8}\right) \le \frac{\pi}{4}$

$$0 \le S_2 = (S_2 - S_1) + S_1 = S_1 + \arctan\left(\frac{1}{8}\right) \le \frac{\pi}{2}$$

$$\text{ET} \qquad S_2 \in \arctan\left(\frac{3}{4}\right) + \pi \mathbb{Z}$$

$$\implies S_2 = \arctan\left(\frac{3}{4}\right)$$

Ces encadrements prouvent $S_n = \arctan(n/(n+1))$ par récurrence :

$$0 \le S_n = \arctan\left(\frac{n}{n+1}\right) \le \frac{\pi}{4}$$

$$0 \le S_{n+1} - S_n = \arctan\left(\frac{1}{2(n+1)^2}\right) \le \frac{\pi}{4}$$

$$0 \le S_{n+1} = (S_{n+1} - S_n) + S_n = S_n + \arctan\left(\frac{1}{2(n+1)^2}\right) \le \frac{\pi}{2}$$

$$\text{ET} \qquad S_{n+1} \in \arctan\left(\frac{n}{n+1}\right) + \pi \mathbb{Z}$$

$$\implies S_{n+1} = \arctan\left(\frac{n}{n+1}\right)$$