RELATIONS DE COMPARAISON

Définitions des suites négligeables, équivalentes et dominées, Définitions similaires associées aux fonctions en $a \in \overline{\mathbb{R}}$, Distinction des cas où la suite $(v_n)_{n \in \mathbb{N}}$ ne s'annule pas à partir d'un certain rang par les limites, et du cas général avec les quantificateurs :

$$u_n = \underset{n \to +\infty}{o} (v_n) \iff \lim_{n \to +\infty} \frac{u_n}{v_n} = 0$$
$$\iff \forall \, \varepsilon > 0 \quad \exists \, N \in \mathbb{N} \quad \forall \, n \ge N \quad |u_n| \le \varepsilon |v_n|$$

1 - Formulaire des suites négligeables, y compris si elles s'annulent :

$$u_n = \underset{n \to +\infty}{o}(v_n) \text{ ET } v_n = \underset{n \to +\infty}{o}(w_n) \Longrightarrow u_n = \underset{n \to +\infty}{o}(w_n)$$

$$u_n = \underset{n \to +\infty}{o}(w_n) \text{ ET } v_n = \underset{n \to +\infty}{o}(w_n) \Longrightarrow u_n \pm v_n = \underset{n \to +\infty}{o}(w_n) \quad \cdots$$

- 2 Propriétés des suites équivalentes :
 - la relation est une relation d'équivalence sur l'ensemble des suites,
 - deux propriétés sur les limites et les suites équivalentes :

$$\lim_{n \to +\infty} u_n = \ell \operatorname{ET} u_n \underset{n \to +\infty}{\sim} v_n \Longrightarrow \lim_{n \to +\infty} v_n = \ell$$

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = \ell \in \mathbb{R}^* \Longrightarrow u_n \underset{n \to +\infty}{\sim} v_n$$

• si les suites tendent vers $+\infty$ ou 0, équivalence des logarithmes :

$$\lim_{n \to +\infty} u_n = +\infty \text{ ET } u_n \underset{n \to +\infty}{\sim} v_n \Longrightarrow \ln u_n \underset{n \to +\infty}{\sim} \ln v_n$$

• condition nécessaire et suffisante d'équivalence de l'exponentielle :

$$e^{u_n} \underset{n \to +\infty}{\sim} e^{v_n} \Longleftrightarrow \lim_{n \to +\infty} u_n - v_n = 0$$

- conservation des équivalents par produits, quotients, puissances,
- non conservation des équivalents par les limites et les sommes, non conservation par les exponentielles et les logarithmes.
- 3 Échelle de comparaison des fonctions vers $+\infty$ où a>0 et $(b,c)\in\mathbb{R}^2$:

$$a^{x}x^{b} \, \ln^{c}x = \underset{x \to +\infty}{o}(\alpha^{x}x^{\beta} \, \ln^{\gamma}x) \Longleftrightarrow \begin{cases} a < \alpha \\ \mathsf{OU}\,(a = \alpha \, \mathsf{ET} \, b < \beta) \\ \mathsf{OU}\,(a = \alpha \, \mathsf{ET} \, b = \beta \, \mathsf{ET} \, c < \gamma) \end{cases}$$

• à partir des limites usuelles $\lim_{x \to +\infty} a^x$, $\lim_{x \to +\infty} x^b$ et $\lim_{x \to +\infty} \ln^c x$,

- limites asymptotique de $\frac{\exp x}{x}$ et $\frac{\ln x}{x}$ en $+\infty$ par les dérivées,
- conséquences sur les limites a^x/x , a^x/x^b , $\ln x/x^b$ et $\ln^c x/x^b$,
- réciproque du théorème, éventuellement $a^x x^b \ln^c x = a^x x^{b+1} \frac{\ln^c x}{x}$,
- sens direct du théorème général, par la contraposée, la négation échange (a, b, c) et (α, β, γ) , sauf cas $(a, b, c) = (\alpha, \beta, \gamma)$,
- cas des limites avec $(\alpha, \beta, \gamma) = (1, 0, 0)$ ou (a, b, c).
- 4 Comparaison des fonctions usuelles à droite en 0 :

$$x^b |\ln x|^c = \mathop{o}_{x \to 0}(x^\beta |\ln x|^\gamma) \Longleftrightarrow b > \beta \ \mathsf{OU} \ (b = \beta \ \mathsf{ET} \ c < \gamma)$$

 \bullet remarquons $\lim_{x\to 0}a^x=1$ et les rôles différents des signes de b et c :

$$\lim_{x \to 0} x^b = 0 \Longleftrightarrow b > 0 \quad \lim_{x \to 0} |\ln x|^c = 0 \Longleftrightarrow c < 0$$

- démonstration par composition des limites $x \mapsto 1/x$.
- 5 Relations entre les suites négligeables et les suites équivalentes :

$$u_n = o(v_n) \iff u_n + v_n \sim v_n \qquad a_n \sim b_n \iff a_n - b_n = o(b_n)$$

6 - Deux suites équivalentes sont strictement du même signe à partir d'un certain rang ; démonstration avec $\varepsilon = 1/2 > 0$:

$$u_n \underset{n \to +\infty}{\sim} v_n \Longrightarrow \left[\exists \, N \in \mathbb{N} \quad \forall \, n \ge N \quad \left\{ \begin{array}{l} u_n < 0 \Longleftrightarrow v_n < 0 \\ u_n = 0 \Longleftrightarrow v_n = 0 \\ u_n > 0 \Longleftrightarrow v_n > 0 \end{array} \right. \right]$$

7 - Applications habituelles aux développements limités :

$$f(x) = \mathop{o}\limits_{x \to a}(g(x)) \; \mathsf{ET} \; g(x) \mathop{\sim}\limits_{x \to a} h(x) \Longrightarrow f(x) = \mathop{o}\limits_{x \to a}(h(x))$$

$$f(x) = \underset{x \to a}{o}((x-a)^p) \Longrightarrow (x-a)^q f(x) = \underset{x \to a}{o}((x-a)^{p+q})$$

$$f(x) = \underset{x \to 0}{o}(x^p) \Longrightarrow f(\lambda x) = \underset{x \to 0}{o}(x^p) \operatorname{ET} f(x^q) = \underset{x \to 0}{o}(x^{pq})$$

- 8 Exemples de fonctions équivalentes et de suites négligeables :
 - un équivalent de $\binom{2n}{n}$, par l'équivalent de Strirling,
 - équivalents de $\frac{\sin x}{\tanh x}$ et de $\lim_{x\to a} \frac{a^x x^a}{x^x a^a}$, par les dérivées en 0 ou a,
 - un équivalent de $(2^x)^{(3^x)}/(3^x)^{(2^x)}$, par le logarithme,
 - un équivalent de arccos x en 1, par construction trigonométrique,
 - classement par négligeable : 2^{3n} , 3^{2n} , $2^{(n^2)}$, $2^{(2^n)}$, $(2^n)^2$ et $2^{(n^3)}$.