Colle: Variables aléatoires

1 Pour commencer

Un exercice de révision sur le calcul asymptotique, développements limités, équivalents.

2 Cours

- 1. Questions de la semaine précédente.
- 2. Définition de l'espérance, Formule du transfert
- 3. Énoncé et preuve de l'inégalité de Markov.
- 4. Résultat et preuve de si X et Y sont indépendantes alors E(XY) = ...
- 5. Variance, preuve de « $V(X) = E(X^2) E(X)^2$ ».
- 6. Énoncé et preuve de l'inégalité de Bienaymé-Tchebychev
- 7. Valeurs et calculs de l'espérance des lois uniforme, de Bernoulli et binomiales.
- 8. Covariance , covariance de variables aléatoires indépendantes.

3 Exercices

3.1 Exercices à rédiger

1. Soient X une variable aléatoire réelle et $g: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction strictement croissante. Montrer que

$$\forall a \geqslant 0, P(|X| \geqslant a) \leqslant \frac{E(g(|X|))}{g(a)}$$

- 2. Une urne contient n boules blanches et n boules rouges. On tire simultanément n boules dans celle-ci et on note X le nombre de boules rouges obtenues lors de ce tirage. Quelle est la loi de X, son espérance, sa variance?
- 3. Soit X une variable aléatoire à valeurs dans $\{0,1,\ldots,n\}$ telle qu'il existe $a\in\mathbb{R}$ vérifiant

$$P(X = k) = a \binom{n}{k}$$

Calculer l'espérance et la variance de X.

3.2 Exercices d'entraînement

- 1. Exercices de la semaine précédente.
- 2. Soit n > 2 un entier naturel, on munit S_n l'ensemble des permutations de [1, n] de la probabilité uniforme.

On définit la variable aléatoire X par si $\sigma \in S_n$ alors $X(\sigma)$ est le cardinal de $\{i \in [\![1,n]\!] | \sigma(i)=i\}$. On définit aussi la famille de variables aléatoires (X_1,\ldots,X_n) par $\forall \sigma \in S_n$ si $\sigma(i)=i$ alors $X_i(\sigma)=1$ et sinon $X_i(\sigma)=0$

- a) Montrer que pour tout i, la variable aléatoire X_i suit une loi de Bernoulli de paramètre à préciser.
- b) Exprimer X en fonction de X_1, \ldots, X_n et en déduire E(X).

- c) Soient $i \neq j \in [1, n]$ calculer $E(X_i X_j)$
- d) Calculer la variance de X.
- 3. Un étudiant résout un QCM constitué de n questions offrant chacune quatre réponses possibles. Pour chaque question, et indépendamment les unes des autres, il a la probabilité p de savoir résoudre celle-ci. Dans ce cas il produit la bonne réponse. Si en revanche, il ne sait pas résoudre la question, il choisit arbitrairement l'une des quatre réponses possibles. On note X la variable aléatoire déterminant le nombre de questions qu'il savait résoudre et Y le nombre de questions qu'il a correctement résolues parmi celles où il a répondu « au hasard».
 - a) Donner la loi de X, puis ma loi conjointe de X et Y.
 - b) Reconnaître la loi de Z = X + Y.
 - c) Calculer espérance et variance de Z .

3.3 Exercice complémentaire

On reprend le dernier exercice de la feuille précédente que l'on résout avec des variables aléatoire. Une succession d'individus A_1, \ldots, A_n se transmet une information binaire du type « oui »ou « non ».

Chaque individu A_k transmet l'information qu'il a reçu avec la probabilité p à l'individu A_{k+1} ou la transforme en son inverse avec la probabilité 1-p. Chaque individu se comporte indépendamment des autres.

On note X_i la variable aléatoire définie par

- $X_i = 1$ si A_i transmet l'information qu'il a reçue,
- $-X_i = 0$ sinon.

Quelle est la loi de probabilité suivie par la variable aléatoire X_i ?

En utilisant le variables aléatoires $X_2, \ldots X_{n-1}$, calculer la probabilité p_n pour que l'information reçu par A_n soit identique à celle émise par A_1 .

On suppose $0 . Quelle est la limite de <math>p_n$ quand n tend vers l'infini?