Contrôle du 15 mai 2023 Calculatrices interdites

Pour ceux qui bénéficient d'un tiers temps : Les questions marquées par un ♦ sont neutralisées, nous n'avez pas à les chercher mais vous pourrez utiliser les résultats donnés par l'énoncé.

1 Analyse et Probabilités

Dans ce problème, la probabilité d'un événement A et notée $\mathbb{P}(A)$ et l'espérance d'une variable aléatoire X est notée $\mathbb{E}(X)$.

1. Soit k un entier supérieur à 1.

Montrer que pour tout $j \geqslant 1$:

$$\int_{j-1}^{j} t^k dt \leqslant j^k \leqslant \int_{j}^{j+1} t^k dt$$

Un schéma bien réalisé peut suffire à établir ce résultat.

En déduire que pour $n \ge 2$:

$$\int_0^n t^k dt \leqslant \sum_{j=1}^n j^k \leqslant \int_1^{n+1} t^k dt$$

2. En déduire un équivalent de $S_n = \sum_{j=1}^n j^k$ quand n tend vers $+\infty$.

Soient k et n deux éléments de \mathbb{N}^* . On dispose de k urnes contenant chacune n boules numérotées de 1 à n.

On tire une boule au hasard de chaque urne et on désigne par X_n la variable aléatoire égale au plus grand des numéros obtenus. On suppose que les tirages sont indépendants les uns des autres.

- 3. Donner l'ensemble J des valeurs prises par X_n .
- 4. Soit $j \in J$. Évaluer la probabilité $\mathbb{P}(X_n \leq j)$ et prouver que l'on a : $\mathbb{P}(X_n = j) = \frac{j^k (j-1)^k}{n^k}$.

5. \blacklozenge Démontrer que l'espérance $\mathbb{E}(X_n)$ de la variable aléatoire X_n peut s'écrire :

$$\mathbb{E}(X_n) = \sum_{j=0}^{n-1} \mathbb{P}(X_n > j).$$

- 6. Encadrer $\mathbb{E}(X_n)$ et en donner un équivalent quand n tend vers l'infini.
- 7. \blacklozenge Lorsque k=1, reconnaître la loi de X_n et donner son espérance.

2 Algèbre

2.1 Questions préliminaires

Pour tout entier $n \ge 2$, on note : $\omega = \exp\left(\frac{2i\pi}{n}\right)$ où i est un nombre complexe tel que $i^2 = -1$.

- 1. Soit $z \in \mathbb{C}^*$. Démontrer que |z| = 1 si, et seulement si $\overline{z} = \frac{1}{z}$.
- 2. Soit $k \in [0, n-1]$. Déterminer $r \in [0, n-1]$ tel que $\overline{\omega^k} = \omega^r$.
- 3. Calculer $S_n = \sum_{k=0}^{n-1} \omega^k$ et $P_n = \prod_{k=0}^{n-1} \omega^k$.

On considère le polynôme $P = \sum_{k=1}^{n} k X^{k-1}$.

4. Montrer que pour tout réel x différent de 1:

$$P(x) = \frac{nx^{n+1} - (n+1)x^n + 1}{(x-1)^2}.$$

- 5. \blacklozenge Montrer que : $\forall k \in [[1, n-1]], P(\omega^k) = \frac{n}{\omega^k 1}$.
- 6. En factorisant $X^n 1$ dans $\mathbb{C}[X]$, montrer que : $\prod_{k=1}^{n-1} (1 \omega^k) = n$.

À partir de maintenant n=4.

On note F et A les matrices de $\mathcal{M}_4(\mathbb{C})$ définies par :

$$F = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \text{ et } A = P(F) \text{ où } P \text{ est le polynôme défini ci dessus}$$
 dans le cas $n = 4$.

Nous noterons en outre $\mathcal B$ la base canonique de $\mathbb C^4$ et f l'endomorphisme de $\mathbb C^4$ canoniquement associé à F.

2.2 Étude de F et de A

- 1. Déterminer F^2 , F^3 et F^4 .
- 2. On note G_F le sous-espace vectoriel de $\mathcal{M}_4(\mathbb{C})$ engendré par la famille $(F^k)_{k\in\mathbb{N}}$.

Montrer que G_F est de dimension 4. En donner une base.

On souhaite trouver une base $\mathcal{C}=(\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4)$ de \mathbb{C}^4 telle quel

$$\operatorname{Mat}_{\mathcal{C}}(f) \text{ soit de la forme} \begin{pmatrix} \alpha_1 & 0 & 0 & 0 \\ 0 & \alpha_2 & 0 & 0 \\ 0 & 0 & \alpha_3 & 0 \\ 0 & 0 & 0 & \alpha_4 \end{pmatrix} \text{ où } (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \in \mathbb{C}^4.$$

3. Montrer que, si une telle base existe alors :

$$\forall k \in [1, 4] : Det(F - \alpha_k I_4) = 0.$$

- 4. En déduire les valeurs possibles de α_1 , α_2 , α_3 et α_4 .
- 5. Déterminer une base \mathcal{C} de \mathbb{C}^4 telle que la $\mathrm{Mat}_{\mathcal{C}}(f)$ soit diagonale.
- 6. \blacklozenge Calculer la matrice A, son déterminant.
- 7. \blacklozenge Montrer A est semblable à une matrice diagonale.