Indications sur le contrôle du 6/05/2024

1 Majoration de Lagrange

1. Pour n = 0, l'inégalité devient

$$|f(x) - f(0)| \le \sup_{[} 0, x](|f'|) x$$

On reconnaît l'inégalité des accroissements finis pour f entre 0 et x.

2. En remarquant que $f'^{(k)} = f^{k+1}$ pour tout k, on a pour tout x dans I,

$$\left| f'(x) - \sum_{k=0}^{n-1} \frac{f^{(k+1)}(0)}{k!} x^k \right| \le \sup_{[0,x]} \left| f^{(n+2)} \right| \frac{x^{n+1}}{(k+1)!}.$$

D'où en intégrant entre 0 et x:

$$\left| \int_0^x f'(t) - \sum_{k=0}^{n-1} \frac{f^{(k+1)}(0)}{k!} t^k dt \right| \leqslant \int_0^x \left| f'(t) - \sum_{k=0}^{n-1} \frac{f^{(k+1)}(0)}{k!} t^k \right| dt \leqslant \int_0^x \sup_{[0,x]} \left| f^{(n+2)} \right| \frac{t^{n+1}}{(n+1)!} dt$$

Ce qui donne :

$$\left| f(x) - f(0) - \sum_{k=0}^{n} \frac{f^{(k+1)}(0)}{(k+1)!} x^{k+1} \right| \le \sup_{[0,x]} \left| f^{(n+2)} \right| \frac{x^{n+2}}{(n+2)!}$$

 $\sup_{[0,x]} |f^{(n+2)}|$ ne dépend pas de la variable d'intégration t.

Ce qui après un changement d'indice nous donne le résultat demandé.

À la question 1) nous avons l'initialisation de la formule.

Nous venons de faire, la formule est donc prouvée par récurrence.

- 3. Après avoir calculé les premiers rangs, on peut conjecturer que $g^{(k)}(x) = \frac{(2k)!}{4^k \, k!} (1-x)^{-(2k+1)/2}$ et on vérifie cette conjecture par récurrence.
- 4. Si k est un entier naturel alors

$$\frac{\binom{2k+2}{k+1}}{\binom{2k}{k}} = \frac{(2k+2)!}{((k+1)!)^2} \frac{(2k)!}{(k!)^2} = \frac{(2k+2)(2k+1)}{(k+1)^2} \frac{2(2k+1)}{(k+1)} \leqslant \frac{2(2k+2)}{k+1} = 4$$

D'où par une récurrence simple $\binom{2k}{k} \leqslant 4^k$.

5. q est de classe \mathcal{C}^{∞} sur [0,1[comme composée de fonctions \mathcal{C}^{∞} .

En appliquant la majoration de Lagrange à g on obtient :

$$\left| \frac{1}{\sqrt{1-x}} - \sum_{k=0}^{n} \frac{\binom{2k}{k}}{4^k} x^k \right| \le \sup_{[0,x]} \left| g^{(n+1)} \right| \frac{x^{k+1}}{(k+1)!}$$

Toutes les dérivées de g étant positives on en déduit que $\sup_{[0,x]} |g^{(n+1)}| = g^{(n+1)}(x)$ $(g^{(n+1)} \text{ est positive croissante.})$

Il vient alors:

$$\sup_{[0,x]} \left| g^{(n+1)} \right| \frac{x^{k+1}}{(k+1)!} = \frac{\binom{2n+2}{n+1}}{4^{n+1}} x^{n+1} (1-x)^{-(2n+3)/2} \leqslant \frac{1}{\sqrt{1-x}} \left(\frac{x}{1-x} \right)^{n+1}$$

Or
$$0 \leqslant x < \frac{1}{2}$$
 d'où $0 \leqslant \frac{x}{1-x} 1$ d'où $\left(\frac{x}{1-x}\right)^n \to 0$

et donc
$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{\binom{2k}{k}}{4^k} x^k = \frac{1}{\sqrt{1-x}}.$$

2 Probabilités

- 1. Les $(X_k)_{0 \le k \le n}$ sont des variables de Bernoulli indépendantes donc Y_n suit la loi binomiale $\mathcal{B}(n,p)$.
- 2. A_n correspond à $Y_{2n} = n$ donc $\mathbb{P}(A_n) = \binom{2n}{n} p^n (1-p)^n$. On peut remarquer que la formule est encore valable pour n = 0.

3.

$$\sum_{k=1}^{n} \mathbb{P}(A_k) = \sum_{k=1}^{n} \binom{2k}{k} (p(1-p))^k \sum_{k=1}^{n} \frac{\binom{2k}{k}}{4^k} (4p(1-p))^k$$

Or pour $p < \frac{1}{8}$, $4p(1-p) < \frac{1}{2}$ et donc d'après la partie précédente,

$$\sum_{k=0}^{n} \frac{\binom{2k}{k}}{4^k} (4 p (1-p))^k \xrightarrow[n \to +\infty]{} \frac{1}{\sqrt{1-4p(1-p)}}$$

- 4. Il ne peut y avoir qu'une seule première fois où il y a autant de «piles» que de «faces», donc si $m \neq n$ alors B_n et B_m sont incompatibles.
- 5. Si au m^e tirage il y autant de «piles» que de «faces» pour que cela se reproduire au n^e tirage il faut que les n-m tirages intermédiaires produisent autant de «piles» que de «faces» d'où $\mathbb{P}_{B_m}(A_n) = \mathbb{P}(A_{n-m})$.
- 6. Si au $n^{\rm e}$ tirage il y a eu un unique premier $1 \ll m \leqslant n$ tirage avec autant de «piles» que de «faces». A_n est donc l'union disjointe des $A_n \cap B_k$ pour k allant de 1 à n d'où

$$\mathbb{P}(A_n) = \sum_{k=1}^n \mathbb{P}(A_n \cap B_k)$$
$$= \sum_{k=1}^n \mathbb{P}(B_k) \mathbb{P}_{B_k}(A_n)$$
$$= \sum_{k=1}^n \mathbb{P}(B_k) \mathbb{P}(A_{n-k})$$

3 Matrices et équations différentielles

- 1. La dérivation est linéaire et quand on dérive une fonction de classe \mathcal{C}^{∞} , on obtient une fonction de classe \mathcal{C}^{∞} , D est donc bien un endomorphisme de E.
- 2. Une fonction de dérivée nulle est constante, on en déduit que le noyau de D est l'ensemble des fonctions constantes.
- 3. Le noyau de $D^2 + D + Id$ est défini par l'équation différentielle $y'' + y' + y = \text{dont l'équation caractéristique a pour racines j et j}^2$.

le noyau de D^2+D+Id est donc l'ensemble des fonctions de la forme $\varphi(x)=e^{-\frac{x}{2}}\left(A\sin(x)+B\cos(x)\right)$ où $(A,B)\in\mathbb{R}^2$.

4. Les φ_i sont clairement dans E.

Soit $f \in E$, il existe $(a, b, c, d) \in \mathbb{R}^4$ tel que $\forall x \in \mathbb{R}$, $f(x) = e^x (a + bx + cx^2 + dx^3)$ on a donc $F \subset \text{Vect}(\varphi_0, \varphi_1, varphi_2\varphi_3)$.

Réciproquement, Si $f \in \text{Vect}(\varphi_0, \varphi_1, varphi_2\varphi_3)$ alors $\exists (a, b, c, d) \in \mathbb{R}^4$ tel que $\forall x \in \mathbb{R}, f(x) = a e^x + b x e^x + c x^2 e^x + d x^3 e^x = e^x (a + b x + c x^2 + d x^3)$ d'où $f \in F$.

On a donc $F = \text{Vect}(\varphi_0, \varphi_1, varphi_2\varphi_3)$ ce qui prouve que F est bien un sev de E.

5. On sait déjà que \mathcal{B} engendre F, il reste à vérifier que c'est une famille libre.

Soit $(a, b, c, d) \in \mathbb{R}^4$ tel que $a\varphi_0 + b\varphi_1 + c\varphi_2 + d\varphi_3 = 0$.

On a $\forall x \in \mathbb{R}$, $(a+bx+cx^2+dx^3)e^x=0$ d'où $a+bx+cx^2+dx^3=0$, le polynôme $a+bX+cX^2+dX^3$ a donc une infinité de racines, c'est donc le polynôme nul.

On en déduit a = b = c = d = 0, \mathcal{B} est bien libre, c'est une base de F.

- 6. \mathcal{B} est une base de F et D est linéaire d'où $D(F) = \text{Vect}(D(\varphi_0), D(\varphi_1), D(\varphi_2), D(\varphi_3))$. Si $x \in \mathbb{R}$ et $i \in [0,3]$ alors $\varphi'(x) = (ix^{i-1} + x^i)e^x$ d'où $\varphi'_i \in F$. On en déduit que $D(F) \subset F$.
- 7. Pour déterminer A, on exprime les dérivées des éléments de \mathcal{B} dans elle-même.

Les calculs de la question précédente nous permettent de dire que $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

8. A est de la forme $A = I_4 + B$, B et I_4 commutant, on peut utiliser le binôme de Newton.

d'où $A^n = I_4 + n\,B + \frac{n(n-1)}{2}\,B^2 + \frac{n(n-1)(n-2)}{6}\,B^3$

- 9. Après calcul , $M = \begin{pmatrix} 3 & 3 & 2 & 0 \\ 0 & 3 & 6 & 6 \\ 0 & 0 & 3 & 9 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ et $M^{-1} = \frac{1}{9} \begin{pmatrix} 3 & -3 & 4 & -6 \\ 0 & 3 & -6 & 12 \\ 0 & 0 & 3 & -9 \\ 0 & 0 & 0 & 3 \end{pmatrix}$.
- 10. Dans la base $\mathcal B$ le problème s'écrit $M\,X=\begin{pmatrix} -1\\0\\1\\0\end{pmatrix}$,

il a pour unique solution $X = M^{-1} \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 1 \\ -6 \\ 3 \\ 0 \end{pmatrix}.$

On en déduit que $\psi(x) = \frac{e^x}{9} \left(1 - 6x + 3x^2\right)$ est une solution particulière de l'équation $y'' + y' + y = e^x(x^2 - 1)$.

11. Soit $(\alpha, \beta) \in \mathbb{R}^2$.

$$A^{2} + \alpha A + \beta I_{0} = \begin{pmatrix} \alpha + \beta + 1 & \alpha + 2 & 2 & 0\\ 0 & \alpha + \beta + 1 & 2\alpha + 4 & 6\\ 0 & 0 & \alpha + \beta + 1 & 3\alpha + 6\\ 0 & 0 & 0 & \alpha + \beta + 1 \end{pmatrix}$$

On en déduit que

- Si $\alpha + \beta + 1 \neq 0$ alors rang $(A^2 \alpha A + \beta) = 3$.
 - On peut remarquer que cela correspond à 1 n'est pas racine de $X^2 + \alpha X + \beta$.
- Si $\alpha + \beta + 1 = 0$ et $\alpha \neq -2$ alors rang $(A^2 \alpha A + \beta) = 2$.
 - On peut remarquer que cela correspond à 1 n'est pas racine de $X^2 + \alpha X + \beta$.
- Si $\alpha = -2$ et $\beta = 1$ alors rang $(A^2 \alpha A + \beta) = 1$.
 - On peut remarquer que cela correspond à 1 est racine double de $X^2 + \alpha X + \beta$.
- 12. Si $\alpha + \beta + 1 \neq 0$ alors $A^2 + \alpha A + \beta I_3$ est inversible et comme dans la question 10) l'équation différentielle $y'' + \alpha y' + \beta y = e^x(x^2 1)$ a une unique solution dans F.
 - Si $\alpha + \beta + 1 = 0$ et $\alpha \neq -2$ alors $A^2 + \alpha A + \beta I_3$ n'est pas inversible et $\text{Im}(A^2 + \alpha A + \beta I_3) = \text{Vect}(\varphi_0, \varphi_1, \varphi_2)$ d'où l'équation différentielle $y'' + \alpha y' + \beta y = e^x(x^2 1)$ a une infinité de solutions dans F.
 - Si $\alpha = -2$ et $\beta = 1$ alors $\text{Im}(A^2 + \alpha A + \beta I_3) = \text{Vect}(\varphi_0, \varphi_1)$ d'où l'équation différentielle $y'' + \alpha y' + \beta y = e^x(x^2 1)$ n'a pas de solutions dans F.
- 13. \mathcal{C} est composée de 4 fonctions et $\dim(F) = 4$, il suffit de vérifier que \mathcal{C} est libre.

Soit $(a_1, a_2, a_3, a_4) \in \mathbb{R}^4$ tel que $\forall x \in \mathbb{R}, \ a_1\psi_1 + a_2\psi_2 + a_3\psi_3 + a_4\psi_4 = 0.$

Pour x = -2 on obtient $a_1 = 0$,

pour x = -1 on obtient $a_2 = 0$,

pour x = 1 on obtient $a_3 = 0$, pour x = 2 on obtient $a_4 = 0$.

 \mathcal{C} est libre c'est une base de F.

14. En développant on obtient, si $x \in \mathbb{R}$ alors

$$\psi_1(x) = (2 - x - 2x^2 + x^3)e^x$$
, $\psi_2(x) = (4 - 4x - x^2 + x^3)e^x$, $\psi_3(x) = (-4 - 4x + x^2 + x^3)e^x$ et $\psi_4(x) = (-2 - x + 2x^2 + x^3)e^x$.

D'où la matrice de passage de
$$\mathcal{B}$$
 à \mathcal{C} $P = P_{\mathcal{B}}^{\mathcal{C}} = \begin{pmatrix} 2 & 4 & -4 & -2 \\ -1 & -4 & -4 & -1 \\ -2 & -1 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix}$

et
$$Mat_{\mathcal{C}}(D) = P^{-1} A P$$
.