Colle: Déterminants, Produit scalaire

1 Cours

1.1 Sur les déterminants

- 1. Les questions de cours de la semaine précédente.
- 2. Déterminant de Vandermonde, justification de la valeur.
- 3. Comatrice, Définition et énoncé de la formule $A \operatorname{com}(A)^T = \operatorname{com}(A)^T A = \dots$

1.2 Sur les produits scalaires.

- 1. Définition d'un produit scalaire / d'un espace euclidien
- 2. Montrer que $(f|g) = \int_0^1 f(t)g(t)dt$ définit bien un produit scalaire.
- 3. Preuve de Inégalité de Cauchy Schwarz / inégalité triangulaire
- 4. Identité de polarisation.
- 5. Définition de l'orthogonal.

2 Exercices

2.1 Exercices à rédiger

- 1. Exercice d'entraînement ne 3.
- 2. On définit une application $\varphi : \mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{C}$ par

$$\varphi(P,Q) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(e^{i\theta}) Q(e^{-i\theta}) d\theta$$

- a) Montrer que φ définit un produit scalaire sur $\mathbb{R}[X]$.
- b) Montrer que $(1, X, X^2, \dots, X^n)$ est une famille orthonormée pour ce produit scalaire.
- 3. On considère un espace vectoriel euclidien E muni d'une base orthonormée $\mathcal{B}=(i,j,k)$. Former la matrice dans \mathcal{B} de la projection orthogonale sur le plan P d'équation x+y+z=0.

2.2 Exercices d'entraînement

- 1. Exercices de la semaine dernière sur les déterminants.
- 2. Soient n un entier supérieur à 2 et $A \in \mathcal{M}_n(\mathbb{K})$.
 - a) Établir

$$\begin{cases} \operatorname{rg}(A) = n & \Rightarrow \operatorname{rg}\left(\operatorname{com}(A)\right) = n \\ \operatorname{rg}(A) = n - 1 & \Rightarrow \operatorname{rg}\left(\operatorname{com}(A)\right) = 1 \\ \operatorname{rg}(A) \leqslant n - 2 & \Rightarrow \operatorname{rg}\left(\operatorname{com}(A)\right) = 0 \end{cases}$$

b) Montrer

$$\det\left(\operatorname{com}(A)\right) = \left(\det A\right)^{n-1}$$

c) En déduire

3. On pose
$$A = \begin{pmatrix} 4 & -2 & -2 \\ 1 & 0 & -1 \\ 3 & -2 & -1 \end{pmatrix}$$

et f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est A. Montrer qu'il existe une base dans laquelle la matrice de f est diagonale.

4. Soient
$$E = \mathbb{R}^2$$
 et $a, b, c, d \in \mathbb{R}$. Pour $u = (x, y)$ et $v = (x', y') \in \mathbb{R}^2$, on pose

$$\varphi(u, v) = axx' + bxy' + cx'y + dyy'$$

A quelle(s) condition(s) sur a, b, c, d a-t-on φ produit scalaire sur \mathbb{R}^2 ?

5. Soit
$$(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$$
. Montrer que $\left(\sum_{k=1}^n x_k\right)^2 \leqslant n \sum_{k=1}^n x_k^2$. Étudier les cas d'égalités.

6. Soit E un espace vectoriel euclidien muni d'une base orthonormée
$$\mathcal{B} = (i, j, k)$$
.

Soit
$$p \in \mathcal{L}(E)$$
 déterminé par $\operatorname{Mat}_{\mathcal{B}}(p) = \frac{1}{6} \begin{pmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix}$.

Montrer que p est une projection orthogonale sur un plan do

Montrer que p est une projection orthogonale sur un plan dont on précisera une équation.