
Programme n°9

ELECTROCINETIQUE

EL4 Régime transitoire du second ordre

Exercices

<u>EL5 Les dipôles linéaires en régime sinusoïdal forcé, impédances complexes</u> (Cours et exercices d'application directe)

• Utilisation des impédances complexes- Associations de deux impédances

→ Association série→ Association parallèle

- Modèle générateur

- Les diviseurs en régime sinusoïdal

→ Diviseur de tension→ Diviseur de courant

→ Exemples

• La résonance - Définition

- Résonance en courant dans un circuit RLC série

ightarrow Expression du courant

 \rightarrow La bande passante

 \rightarrow Etude de la phase

- Résonance en tension aux bornes du condensateur

→ Mise équation→ Etude de la résonance

Impédances complexes.	Établir et connaître l'impédance d'une résistance, d'un condensateur, d'une bobine.
Association de deux impédances.	Remplacer une association série ou parallèle de deux impédances par une impédance équivalente.
Oscillateur électrique ou mécanique soumis à une excitation sinusoïdale. Résonance.	Utiliser la représentation complexe pour étudier le régime forcé. Relier l'acuité d'une résonance au facteur de qualité. Déterminer la pulsation propre et le facteur de qualité à partir de graphes expérimentaux d'amplitude et de phase. Mettre en œuvre un dispositif expérimental visant à caractériser un phénomène de résonance.

ATOMISTIQUE

AT1 Atomes et molécules (Cours uniquement)

• La classification périodique

- Historique
- Le tableau de Mendeleïev
- Structure en bloc

La liaison covalente

- Définition d'une liaison covalente

- Energies de liaison

- Distance interatomique

La règle de l'octet

- Schéma de Lewis des atomes
- Représentation de Lewis
- Exemples
- La charge formelle
- Limites de la règle de l'octet

• Géométrie des molécules

- Règle abrégée de GillespieReprésentation spatiale
- Exemples
- Polarité des molécules
- L'électronégativité
- Notion de moment dipolaire électrostatique
- Cas d'une molécule diatomique
- Molécules polyatomiques

4.2.1 Structure des entités chimiques

Modèle de la liaison covalente

Liaison covalente localisée.

Schéma de Lewis d'une molécule ou d'un ion monoatomique ou d'un ion polyatomique pour les éléments des blocs s et p.

Citer les ordres de grandeur de longueurs et d'énergies de liaisons covalentes.

Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de la position de l'élément dans le tableau périodique.

Établir un schéma de Lewis pertinent pour une molécule ou un ion.

Identifier les écarts à la règle de l'octet.

Géométrie et polarité des entités chimiques

Électronégativité : liaison polarisée, moment dipolaire, molécule polaire.

Associer qualitativement la géométrie d'une entité à une minimisation de son énergie.

Comparer les électronégativités de deux atomes à partir de données ou de leurs positions dans le tableau périodique.

Prévoir la polarisation d'une liaison à partir des électronégativités comparées des deux atomes mis en jeu.

Relier l'existence ou non d'un moment dipolaire permanent à la structure géométrique donnée d'une molécule.

Déterminer direction et sens du vecteur moment dipolaire d'une liaison ou d'une molécule de géométrie donnée.

TP

Charge et décharge d'un condensateur : Circuit RC, circuit RCL