Résumé de cours : Semaine 24, du 25 au 29 mars.

Barycentres et convexité

1 Barycentres (fin)

Propriété. Associativité du barycentre : Soit $k \in \mathbb{N}_p$. Notons G' le barycentre des $(A_i, \lambda_i)_{1 \le i \le k}$ (on suppose que $\lambda' = \sum_{i=1}^k \lambda_i \ne 0$) et G'' le barycentre des $(A_i, \lambda_i)_{k+1 \le i \le p}$ (on suppose que

$$\lambda'' = \sum_{i=k+1}^{p} \lambda_i \neq 0$$
). Alors G est le barycentre de $((G', \lambda'), (G'', \lambda''))$.

Il faut savoir le démontrer.

Propriété. Soit \mathcal{F} un sous-espace affine de \mathcal{E} . Si pour tout $i \in \mathbb{N}_p$, $A_i \in \mathcal{F}$, alors $G \in \mathcal{F}$.

Propriété. L'ensemble des barycentres de A_1, \ldots, A_p est égale à $A_1 + \operatorname{Vect}((\overrightarrow{A_1A_i})_{2 \leq i \leq p})$. Il s'agit du plus petit sous-espace affine contenant $\{A_1, \ldots, A_p\}$.

Exemple. Si A et B sont deux points distincts de \mathcal{E} , la droite (AB) est égale à l'ensemble des barycentres de A et B.

Si A, B et C sont trois points non alignés de \mathcal{E} , l'ensemble des barycentres de A, B et C est l'unique plan affine contenant ces trois points.

Définition. On suppose que $\mathbb{K} = \mathbb{R}$.

Une partie \mathcal{C} de \mathcal{E} est convexe si et seulement si elle vérifie l'une des propriétés équivalentes suivantes :

- 1. Pour tout $(A_1, A_2) \in \mathcal{C}^2$, $[A_1, A_2] \subset \mathcal{C}$, où $[A_1, A_2]$ est le segment d'extrémités A_1 et A_2 , c'est-à-dire l'ensemble des barycentres de $((A_1, t), (A_2, 1 t))$, lorsque t décrit [0, 1].
- 2. Pour tout $(A_1, A_2) \in \mathcal{C}^2$, pour tout $(\lambda_1, \lambda_2) \in \mathbb{R}^2_+ \setminus \{0\}$, le barycentre de $((A_1, \lambda_1), (A_2, \lambda_2))$ est dans \mathcal{C}
- 3. Pour tout $p \in \mathbb{N}^*$, pour tout $(A_i)_{1 \leq i \leq p} \in \mathcal{C}^p$, pour tout $(\lambda_i)_{1 \leq i \leq p} \in \mathbb{R}_+^p \setminus \{0\}$, le barycentre de $(A_i, \lambda_i)_{1 \leq i \leq p}$ est dans \mathcal{C} .

Une partie est donc convexe ssi elle est stable par pour des barycentres pondérés positivement.

Exemple. Les sous-espaces affines sont des convexes.

Propriété. Une intersection de parties convexes est convexe.

Définition. Soit B une partie de \mathcal{E} . L'enveloppe convexe de B est le plus petit convexe de \mathcal{E} contenant B. C'est l'ensemble des barycentres d'un nombre fini de points de B affectés de pondérations positives.

2 Inégalités de convexité

Notation. On fixe une application $f: I \longrightarrow \mathbb{R}$, où I est un intervalle de \mathbb{R} d'intérieur non vide.

Définition. f est convexe si et seulement si

 $\forall (x,y) \in I^2 \quad \forall \alpha \in [0,1] \quad f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y).$

f est concave si et seulement si -f est convexe.

Interprétation géométrique. f est convexe si et seulement si, pour tout $x, y \in I$ avec x < y, le graphe de $f|_{[x,y]}$ est au dessous de la corde joignant les points (x, f(x)) et (y, f(y)). Il faut savoir le démontrer.

Remarque. On peut également définir la stricte convexité et la stricte concavité, en remplaçant l'inégalité large par une inégalité stricte lorsque $\alpha \in]0,1[$.

Propriété. f est concave et convexe si et seulement si elle est affine, i.e de la forme $x \mapsto \alpha x + \beta$.

Propriété. Une somme d'un nombre fini d'applications convexes est convexe.

Définition. $x_0 \in \overset{\circ}{I}$ est un point d'inflexion de f si et seulement si il existe $\varepsilon > 0$ tel que $f|_{I \cap [x_0 - \varepsilon, x_0]}$ est convexe (resp : convexe) et $f|_{I \cap [x_0, x_0 + \varepsilon]}$ est concave (resp : convexe).

Propriété. L'épigraphe de f est $\{(x,y) \in \mathbb{R}^2 / x \in I \text{ et } y \geq f(x)\}$. f est convexe si et seulement si son épigraphe est une partie convexe de \mathbb{R}^2 .

Propriété. Inégalité de Jensen. f est convexe si et seulement si

$$\forall n \in \mathbb{N}^* \ \forall (x_1, \dots, x_n) \in I^n \ \forall (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n_+ \ , \sum_{i=1}^n \lambda_i = 1 \Longrightarrow f\Big(\sum_{i=1}^n \lambda_i x_i\Big) \leq \sum_{i=1}^n \lambda_i f(x_i).$$

Il faut savoir le démontrer.

Exercice. Si $(x_1, ..., x_n) \in \mathbb{R}^n_+$, la moyenne géométrique $\prod_{i=1}^n x_i^{\frac{1}{n}}$ est inférieure à la moyenne arithmétique $\frac{1}{n} \sum_{i=1}^n x_i$.

Il faut savoir le démontrer.

3 Croissance des pentes

Propriété. Lorsque $x, y \in I$ avec $x \neq y$, on pose $p_x(y) = \frac{f(x) - f(y)}{x - y} = p_y(x)$: c'est la pente de la corde d'extrémités (x, f(x)) et (y, f(y)). Les propriétés suivantes sont équivalentes :

- 1. f est convexe sur I.
- 2. Pour tout $a, b, c \in I$ avec $a < b < c, p_a(b) \le p_a(c)$.
- 3. Pour tout $a, b, c \in I$ avec a < b < c, $p_b(a) < p_b(c)$.
- 4. Pour tout $a, b, c \in I$ avec $a < b < c, p_c(a) \le p_c(b)$.

Ainsi, f est convexe si et seulement si pour tout $x_0 \in I$ l'application p_{x_0} est croissante sur $I \setminus \{x_0\}$. Il faut savoir le démontrer.

Propriété. (Hors programme) Si f est convexe sur I, elle est dérivable à droite et à gauche en tout point de I. En particulier, elle est continue sur I.

Il faut savoir le démontrer.

4 Fonctions convexes dérivables

Propriété. Si f est dérivable, alors f est convexe si et seulement si f' est croissante.

Il faut savoir le démontrer.

Propriété. Si f est dérivable, f est convexe si et seulement si son graphe est au dessus de ses tangentes.

Il faut savoir le démontrer.

Propriété. Si f est deux fois dérivable sur I, f est convexe si et seulement si $\forall x \in I$ $f''(x) \geq 0$.

Propriété. On suppose que f est deux fois dérivable sur $\stackrel{\circ}{I}$ et que $x_0 \in \stackrel{\circ}{I}$.

Si f'' change de signe au voisinage de x_0 , alors x_0 est un point d'inflexion de f.

Les polynômes (début)

5 Le groupe des polynômes

Notation. A désigne un anneau quelconque.

Définition. On note $A[X] \stackrel{\Delta}{=} A^{(\mathbb{N})}$: c'est l'ensemble des suites presque nulles.

Si
$$P = (a_k) \in A[X]$$
, on convient de noter $P = \sum_{k \in \mathbb{N}} a_k X^k$.

Remarque. Par définition, deux polynômes sont égaux si et seulement si ils ont les mêmes coefficients.

Propriété. Si
$$P(X) = \sum_{k \in \mathbb{N}} a_k X^k$$
 et $Q(X) = \sum_{k \in \mathbb{N}} b_k X^k$, alors $P + Q = \sum_{k \in \mathbb{N}} (a_k + b_k) X^k$.

(A[X], +) est un sous-groupe commutatif de $A^{\mathbb{N}}$ dont le neutre est le polynôme identiquement nul.

Définition. Si $P(X) = (a_k)_{k \in \mathbb{N}} \in A[X] \setminus \{0\}$, $\deg(P) = \max(\{k \in \mathbb{N}/a_k \neq 0\})$. On convient que $\deg(0) = -\infty$.

Définition. Soit $P(X) = \sum_{k \in \mathbb{N}} a_k X^k \in A[X]$ un polynôme de degré $n \in \mathbb{N}$.

- a_k est le coefficient de P de degré k.
- a_0 est aussi appelé le coefficient constant du polynôme P.
- a_n est appelé le coefficient de plus haut degré de P, ou bien son coefficient dominant.
- On dit que P est unitaire (ou normalisé) si et seulement si $a_n = 1$.
- Le polynôme $a_k X^k$ est appelé un monôme.

Notation. Pour tout $n \in \mathbb{N}$, on note $A_n[X] = \{P \in A[X]/\deg(P) \le n\}$. Ainsi, $A[X] = \bigcup_{n \in \mathbb{N}} A_n[X]$.

Propriété. $\deg(P+Q) \leq \sup(\deg(P), \deg(Q))$, avec égalité lorsque $\deg(P) \neq \deg(Q)$.

6 Produits de polynômes

Définition.
$$\left(\sum_{n\in\mathbb{N}}a_nX^n\right)\times\left(\sum_{n\in\mathbb{N}}b_nX^n\right)\stackrel{\Delta}{=}\sum_{n\in\mathbb{N}}\left(\sum_{k=0}^na_kb_{n-k}\right)X^n.$$

Propriété. Pour tout $P, Q \in A[X]$, PQ est aussi un élément de A[X].

Propriété. $(A[X], +, \times)$ est un anneau, avec $1_{A[X]} = (\delta_{k,0} 1_A)_{k \in \mathbb{N}}$.

Remarque.
$$\left(\sum_{n\in\mathbb{N}}a_nX^n\right)\times\left(\sum_{n\in\mathbb{N}}b_nX^n\right)\times\left(\sum_{n\in\mathbb{N}}c_nX^n\right)=\sum_{n\in\mathbb{N}}\left(\sum_{\substack{(i,j,k)\in\mathbb{N}^3\\i+j+k=n}}a_ib_jc_k\right)X^n.$$

Propriété. L'application $i: A \longrightarrow A[X]$ est un morphisme injectif d'anneaux. On identifie A avec une partie de A[X] en convenant que, pour tout $a \in a, a = i(a)$. Alors $A_0[X] = A$.

Remarque. Lorsque $b \in A$ et $P \in A[X]$, on dispose donc du produit bP. Si $P = \sum_{k \in \mathbb{N}} a_k X^k$, on vérifie que $bP = \sum_{k \in \mathbb{N}} b a_k X^k$.

Propriété. A[X] est commutatif intègre si et seulement si A est commutatif intègre. Il faut savoir le démontrer.

Pour toute la suite de ce chapitre, on supposera que A est commutatif intègre.

Propriété. Pour tout $P, Q \in A[X]$, $\deg(PQ) = \deg(P) + \deg(Q)$.

Il faut savoir le démontrer.

Propriété. U(A[X]) = U(A).

Il faut savoir le démontrer.

Définition. L'indéterminée X est le polynôme $(1_A \delta_{k,1})_{k \in \mathbb{N}}$. On a $X^n = (1_A \delta_{k,n})_{k \in \mathbb{N}}$.

7 Applications polynomiales

Définition. Soit $P = \sum_{k \in \mathbb{N}} a_k X^k \in A[X]$ un polynôme. L'application polynomiale associée à P est l'application $\tilde{P}: A \longrightarrow A \\ x \longmapsto \sum_{k \in \mathbb{N}} a_k x^k$.

Propriété. L'application $\varphi: A[X] \longrightarrow \mathcal{F}(A,A)$ est un morphisme d'anneaux.

Notation. $Im(\varphi)$ est un sous-anneau de $\mathcal{F}(A,A)$. C'est l'anneau des applications polynomiales.

Théorème. Lorsque A est un corps, φ est injectif si et seulement si A est de cardinal infini.

Algorithme d'Hörner : Soit $P = \sum_{k \in \mathbb{N}} a_k X^k \in A[X]$ et $x \in A$. On peut disposer le calcul de $\tilde{P}(x)$ de

la manière suivante : $\dot{P}(x) = (\cdots ((a_n x + a_{n-1})x + a_{n-2}x) + \cdots + a_1)x + a_0$. Cet algorithme permet de calculer $\tilde{P}(x)$ avec n multiplications et n additions.

8 Composition de polynômes

Définition. Si
$$P = \sum_{k=0}^{n} a_k X^k \in A[X]$$
 et $Q \in A[X]$, $P \circ Q = \sum_{k=0}^{n} a_k Q^k = P(Q)$.

Propriété. Pour tout $P, Q, R \in A[X]$,

$$-(P+Q)\circ R = P\circ R + Q\circ R,$$

$$--(PQ) \circ R = (P \circ R) \times (Q \circ R),$$

$$-- (P \circ Q) \circ R = P \circ (Q \circ R).$$

Propriété. Soit $P, Q \in A[X]$ Si $\deg(Q) \ge 1$, alors $\deg(P \circ Q) = \deg(P) \times \deg(Q)$. Il faut savoir le démontrer.

Propriété. Pour tout $P, Q \in A[X]$, $\widetilde{P \circ Q} = \widetilde{P} \circ \widetilde{Q}$.

9 Dérivation formelle

Définition. Si
$$P = \sum_{k \in \mathbb{N}} a_k X^k \in A[X]$$
, on pose $P' \stackrel{\Delta}{=} \sum_{k \in \mathbb{N}^*} k a_k X^{k-1} = \sum_{k \in \mathbb{N}} (k+1) a_{k+1} X^k$.

Remarque. On peut écrire $P' = \sum_{k \in \mathbb{N}} k a_k X^{k+1}$, si l'on convient que $0X^{-1} = 0$.

Définition. Si
$$P = \sum_{k \in \mathbb{N}} a_k X^k$$
, $P^{(0)} = P$ et

pour tout
$$n \in \mathbb{N}$$
, $P^{(n)} = \sum_{k \ge n} \frac{k!}{(k-n)!} a_k X^{k-n} = \sum_{k \in \mathbb{N}} \frac{(k+n)!}{k!} a_{k+n} X^k$.

Propriété. Pour tout $P \in \mathbb{R}[X]$ et $n \in \mathbb{N}$, $\widetilde{P^{(n)}} = \widetilde{P}^{(n)}$.

Propriété. Pour tout $P \in A[X]$, $\deg(P') \leq \deg(P) - 1$.

Propriété. Pour tout $P \in A[X] \setminus \{0\}$, $P^{(\deg(P)+1)} = 0$.

Propriété. Soit $P, Q \in A[X]$, $a \in A$ et $n \in \mathbb{N}$.

- (P+Q)' = P' + Q', et plus généralement, $(P+Q)^{(n)} = P^{(n)} + Q^{(n)}$.
- -(aP)' = aP', et plus généralement, $(aP)^{(n)} = aP^{(n)}$.

-(PQ)' = P'Q + PQ'

Propriété. Pour tout
$$n \in \mathbb{N}$$
 et $P_1, \ldots, P_n \in A[X]$, $(P_1 \times \cdots \times P_n)' = \sum_{i=1}^n P_i' \prod_{i \neq i} P_j$.

Formule de Leibniz :
$$(PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}$$
.

Propriété. Pour tout $P, Q \in A[X], (P \circ Q)' = Q' \times (P' \circ Q).$

10 La structure d'algèbre de $\mathbb{K}[X]$.

Pour la suite de ce chapitre, K désigne un corps.

Propriété. $\mathbb{K}[X]$ est une \mathbb{K} -algèbre.

Propriété. La base canonique de $\mathbb{K}[X]$ est la famille $(X^n)_{n\in\mathbb{N}}$.

Propriété. Soit $n \in \mathbb{N}$. $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$ dont une base est $(1, X, \dots, X^n)$, encore appelée la base canonique de $\mathbb{K}_n[X]$. On en déduit que $\dim(\mathbb{K}_n[X]) = n + 1$.

Exercice. Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynômes de $\mathbb{K}[X]$. On suppose que cette suite de polynômes est étagée c'est-à-dire que, $\forall n\in\mathbb{N} \ \deg(P_n)=n$.

Montrer que pour tout $N \in \mathbb{N}$, $(P_n)_{0 \le n \le N}$ est une base de $\mathbb{K}_N[X]$.

En déduire que $(P_n)_{n\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$.

Il faut savoir le démontrer.

11 Division euclidienne entre polynômes

Théorème. Soit $A, B \in \mathbb{K}[X]$ avec $B \neq 0$. Alors il existe un unique couple $(P, Q) \in \mathbb{K}[X]^2$ tel que A = BQ + R avec $\deg(R) < \deg(B) : Q$ est le quotient de la division euclidienne du dividende A par le diviseur B et que R en est le reste.

Il faut savoir le démontrer.

Définition. Soit $A \in \mathbb{K}[X]$ et $a \in \mathbb{K}$. a est une racine de A si et seulement si $\tilde{A}(a) = 0$.

Propriété. Soit $A \in \mathbb{K}[X]$ et $a \in \mathbb{K}$. Le reste de la division euclidienne de A par X - a est égal au polynôme constant $\tilde{A}(a)$.

Il faut savoir le démontrer.

Corollaire. a est racine de A si et seulement si il existe $Q \in \mathbb{K}[X]$ tel que A = (X - a)Q.

Propriété. Supposons que \mathbb{L} est un sous-corps de \mathbb{K} . Alors, pour tout $(A, B) \in \mathbb{L}[X] \times (\mathbb{L}[X] \setminus \{0\})$, les quotient et reste de la division euclidienne sont les mêmes que l'on regarde A et B comme des polynômes de $\mathbb{L}[X]$ ou de $\mathbb{K}[X]$.

12 Arithmétique

12.1 Divisibilité

Définition. Soient A un anneau commutatif et $(a,b) \in A^2$. a|b si et seulement si $\exists m \in A \ b = ma$. On dit alors que a est un **diviseur** de b et que b est un **multiple** de a.

Remarque. $0|a \iff a = 0$ et, pour tout $a \in A$, a|0.

Propriété. Soit $P, Q \in \mathbb{K}[X]$ tels que $P \mid Q$ et $Q \neq 0$. Alors $\deg(Q) \geq \deg(P)$.

Propriété. Soit $P, Q \in \mathbb{K}[X]$ avec $Q \neq 0$. $P \mid Q$ si et seulement si le reste de la divison euclidienne de P par Q est nul.

Propriété. Soit \mathbb{L} un sous-corps d'un corps \mathbb{K} . Soit $P, Q \in \mathbb{L}[X]$.

Alors $P \mid Q$ dans $\mathbb{L}[X]$ si et seulement si $P \mid Q$ dans $\mathbb{K}[X]$.

Il faut savoir le démontrer.

Propriété. Soient A un anneau commutatif et $a, b, c, d \in A$.

- Si $b \mid a$ et $b \mid c$, alors $b \mid (a+c)$.
- Si $b \mid a$ et $d \mid c$, alors $bd \mid ac$.
- si $b \mid a$, pour tout $p \in \mathbb{N}$, $b^p \mid a^p$.

Propriété. Soient A un anneau commutatif et $b, a_1, \ldots, a_p, c_1, \ldots, c_p \in A$.

Si pour tout
$$i \in \{1, \ldots, p\}$$
, $b \mid a_i$, alors $b \mid \sum_{i=1}^{p} c_i a_i$.

Propriété. Soient A un anneau commutatif et $(a,b) \in A^2$. $a|b \iff bA \subseteq aA$.

Propriété. Soit A un anneau commutatif. La relation de divisibilité est réflexive et transitive.

Définition. Soient A un anneau commutatif et $(a,b) \in A^2$.

a et b sont associ'es si et seulement si a|b et b|a.

La relation "être associé à" est une relation d'équivalence, on la notera "~".

Propriété. Dans un anneau commutatif, si $a \sim b$ et $c \sim d$, alors $ac \sim bd$.

Hypothèse : Jusqu'à la fin de ce paragraphe, on suppose que A est intègre et commutatif.

Propriété. Soit $a, b \in A$. a et b sont associés si et seulement s'il existe $\lambda \in U(A)$ tel que $a = \lambda b$.

Il faut savoir le démontrer.

Exemple. Dans \mathbb{Z} , n et m sont associés si et seulement si |n| = |m|. Dans $\mathbb{K}[X]$, P et Q sont associés si et seulement s'il existe $\lambda \in \mathbb{K}^*$ tel que $Q = \lambda P$.

Propriété. La relation de divisibilité est une relation d'ordre sur N.

La relation de divisibilité est une relation d'ordre sur l'ensemble des polynômes unitaires de $\mathbb{K}[X]$.

Définition. Soit $p \in A$. p est irréductible dans A si et seulement si $p \notin U(A)$ et si, pour tout $a, b \in A$, $p = ab \Longrightarrow (a \in U(A)) \lor (b \in U(A))$.

Ainsi p est irréductible dans A si et seulement si p n'est pas inversible et a pour seuls diviseurs les éléments associés à 1 ou à p.

Remarque. Si p est irréductible, il est non nul.

Propriété. Les éléments irréductibles de $\mathbb Z$ sont les nombres premiers et leurs opposés.

Exemple. Dans $\mathbb{K}[X]$ (où \mathbb{K} est un corps), un polynôme P est irréductible si et seulement si il est de degré supérieur ou égal à 1 et si, pour tout $A, B \in \mathbb{K}[X]$, $P = AB \Longrightarrow (\deg(A) = 0) \vee (\deg(B) = 0)$.

Remarque. Dans $\mathbb{K}[X]$:

- tout polynôme de degré 1 est irréductible;
- tout polynôme de degré ≥ 2 possédant une racine dans $\mathbb K$ est réductible ;
- tout polynôme de degré 2 ou 3 sans racine dans K est irréductible.

Il faut savoir le démontrer.

Définition. Soit $a, b \in A$. On dit que a et b sont premiers entre eux (ou étrangers) si et seulement si les seuls diviseurs communs de a et b sont les éléments inversibles. **Définition.** Soit $n \in \mathbb{N}$ avec

```
n \geq 2 et a_1, \ldots, a_n \in A.
```

- a_1, \ldots, a_n sont deux à deux premiers entre eux si et seulement si, pour tout $i, j \in \{1, \ldots, n\}$ avec $i \neq j$, a_i et a_j sont premiers entre eux.
- a_1, \ldots, a_n sont globalement premiers entre eux si et seulement si les seuls diviseurs communs de a_1, \ldots, a_n sont les éléments inversibles de A.

Propriété. Soit $p \in A$ un élément irréductible et $a \in A : p|a$, ou bien p et a sont premiers entre eux. Il faut savoir le démontrer.

12.2 PGCD

Théorème. Si \mathbb{K} est un corps, alors $\mathbb{K}[X]$ est un anneau principal.

Il faut savoir le démontrer.

Notation. Jusqu'à la fin de ce chapitre "arithmétique", on fixe un anneau A que l'on suppose principal.

Définition. Soit $(a, b) \in A^2$. d est un PGCD de a et b si et seulement si aA + bA = dA.

Caractérisation du PGCD par divisibilité : d est un PGCD de $(a,b) \in A^2$ si et seulement si d est un diviseur commun de a et b et si, pour tout diviseur commun d' de a et b, d' divise d. Il faut savoir le démontrer.

Propriété. a et b sont premiers entre eux si et seulement si 1 est un PGCD de a et b.

Définition. Plus généralement, si $k \in \mathbb{N}^*$ et si $a_1, \ldots, a_k \in A$, on dit que d est un PGCD de a_1, \ldots, a_k si et seulement si $dA = a_1A + \cdots + a_kA$, i.e si et seulement si d est un commun diviseur de a_1, \ldots, a_k tel que si d' est un autre commun diviseur de a_1, \ldots, a_k , alors d' divise d.

Soit B une partie quelconque de A. d est un PGCD de B si et seulement si dA = Id(B), i.e si et seulement si d est un diviseur commun des éléments de B tel que si d' est un autre diviseur commun des éléments de B, alors d' divise d.

Propriété. Lorsque $A = \mathbb{Z}$ (resp : $A = \mathbb{K}[X]$), en imposant au PGCD d'être positif (resp : unitaire) il est unique. On le note alors $a \wedge b$.

```
Propriété. Soit k \in \mathbb{N}, a_1, \ldots, a_k \in A et h \in \{1, \ldots, k\}.

Alors, en convenant de noter a \sim b lorsque a et b sont associés,

— Commutativité du PGCD:

pour tout \sigma \in \mathcal{S}_k, PGCD(a_1, \ldots, a_k) \sim PGCD(a_{\sigma(1)}, \ldots, a_{\sigma(k)}).

— Associativité du PGCD:

PGCD(a_1, \ldots, a_k) \sim PGCD(PGCD(a_1, \ldots, a_h), PGCD(a_{h+1}, \ldots, a_k)).

— Distributivité de la multiplication par rapport au PGCD: pour tout \alpha \in A, PGCD(\alpha a_1, \ldots, \alpha a_k) \sim \alpha PGCD(a_1, \ldots, a_k).

Il faut savoir le démontrer.
```

12.3 PPCM

Définition. Soit $(a,b) \in A^2$. m est un PPCM de a et b si et seulement si $aA \cap bA = mA$.

Caractérisation du PPCM par divisibilité : m est un PPCM de $(a,b) \in A^2$ si et seulement si m est un multiple commun de a et b et si, pour tout multiple commun m' de a et b, m' est un multiple de m.

Définition. Plus généralement, si $k \in \mathbb{N}^*$ et si $a_1, \ldots, a_k \in A$, m est un PPCM de a_1, \ldots, a_k si et seulement si $mA = a_1A \cap \cdots \cap a_kA$, i.e si et seulement si m est un commun multiple de a_1, \ldots, a_k tel que si m' est un autre commun multiple de a_1, \ldots, a_k , alors m' est un multiple de m. Soit B est une partie quelconque de A. m est un PPCM de B si et seulement si $mA = \bigcap bA$, i.e

si et seulement si m est un multiple commun des éléments de B tel que si m' est un autre multiple

```
Propriété. Soit k \in \mathbb{N}, a_1, \ldots, a_k \in A et h \in \{1, \ldots, k\}.

Alors, en convenant de noter a \sim b lorsque a et b sont associés,

— Commutativité du PPCM:

pour tout \sigma \in \mathcal{S}_k, PPCM(a_1, \ldots, a_k) \sim PPCM(a_{\sigma(1)}, \ldots, a_{\sigma(k)}).

— Associativité du PPCM:

PPCM(a_1, \ldots, a_k) \sim PPCM(PPCM(a_1, \ldots, a_h), PPCM(a_{h+1}, \ldots, a_k)).

— Distributivité de la multiplication par rapport au PPCM:

pour tout \alpha \in A, PPCM(\alpha a_1, \ldots, \alpha a_k) \sim \alpha PPCM(a_1, \ldots, a_k).
```

commun des éléments de B, alors m' est un multiple commun de m.