DM3

Dans tout le sujet, I désigne un intervalle inclus dans $\mathbb R$ contenant au moins deux éléments.

Partie I: fonctions convexes

On admettra que, parce que I est un intervalle, pour tout $x,y\in I$ et $\alpha\in[0,1],$ $\alpha x+(1-\alpha)y\in I.$

Lorsque f est une application de I dans \mathbb{R} , on rappelle que f est une dite convexe sur I si et seulement si, pour tout $x,y\in I$ et $\alpha\in[0,1],$ $f(\alpha x+(1-\alpha)y)\leq\alpha f(x)+(1-\alpha)f(y).$ On rappelle également que lorsque f est dérivable sur I, f est convexe sur I si et seulement si sa dérivée f' est croissante sur I.

- 1°) Montrer que l'application exponentielle est convexe sur \mathbb{R} .
- **2°)** Soit f et g deux applications de I dans \mathbb{R} et soit a et b deux réels. On suppose que f et g sont convexes sur I et que a et b sont positifs. Montrer que af + bg est convexe sur I.
- **3°)** Soit $a, b \in \mathbb{R}$ avec a < b. Soit φ une application continue de [a, b] dans \mathbb{R} telle que, pour tout $t \in [a, b], \varphi(t) \geq 0$.

Pour tout $x \in I$ et $t \in [a, b]$, f(x, t) désigne un réel. On suppose que,

- pour tout $t \in [a, b]$, l'application $x \longmapsto f(x, t)$ est convexe sur I;
- pour tout $x \in I$, l'application $t \mapsto f(x,t)$ est continue sur [a,b].

Montrer que l'application $x \mapsto \int_a^b f(x,t)\varphi(t) dt$ est bien définie et qu'elle est convexe sur I.

4°) Soit f une application de $[0, 2\pi]$ dans \mathbb{R} que l'on suppose de classe C^2 . On suppose également que f est convexe sur $[0, 2\pi]$.

Montrer que $\int_0^{2\pi} f(t) \cos(t) dt \ge 0$ (on pourra intégrer par parties).

5°) Soit f une application de [-1,1] dans \mathbb{R} . On suppose que f est deux fois dérivable sur [-1,1] et que, pour tout $x \in [-1,1]$, $2f'(x) + xf''(x) \ge 1$.

Montrer que $\int_{-1}^{1} xf(x) dx \ge \frac{1}{3}$.

- **6°)** a) Montrer que, pour tout $n \in \mathbb{N}^*$, pour tout $x_1, \ldots, x_n \in I$, pour tout $\lambda_1, \ldots, \lambda_n \in \mathbb{R}_+$ tels que $\sum_{i=1}^n \lambda_i = 1$, $\sum_{i=1}^n \lambda_i x_i \in I$.
- **6°) b)** Soit f une application de I dans \mathbb{R} . Montrer que f est convexe si et seulement si pour tout $n \in \mathbb{N}^*$, pour tout $x_1, \ldots, x_n \in I$, pour tout $\lambda_1, \ldots, \lambda_n \in \mathbb{R}_+$ tels que $\sum_{i=1}^n \lambda_i = 1, f\left(\sum_{i=1}^n \lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i f(x_i). \text{ (inégalité de Jensen)}.$
- 7°) Soit $n \in \mathbb{N}^*$ et x_1, \ldots, x_n n réels positifs ou nuls. On appelle moyenne arithmétique de x_1, \ldots, x_n la quantité $\frac{1}{n} \sum_{i=1}^n x_i$ et moyenne géométrique la quantité $\left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$. Montrer que la moyenne géométrique est inférieure à la moyenne arithmétique (il s'agit de l'inégalité arithmético-géométrique).

8°) Soit
$$n \in \mathbb{N}^*$$
 et $x_1, \dots, x_n \in \mathbb{R}_+^*$. Montrer que $1 + \left(\prod_{k=1}^n x_k\right)^{\frac{1}{n}} \leq \prod_{k=1}^n [(1+x_k)^{\frac{1}{n}}]$.

Partie 2: fonctions log-convexes

Lorsque f est une application de I dans \mathbb{R}_+^* , on dit que f est log-convexe sur I si et seulement si $\ln \circ f$ est convexe.

- **9°)** Montrer que l'application $x \mapsto \frac{1}{x^3}$ est log-convexe sur \mathbb{R}_+^* .
- ${\bf 10^\circ})$ Montrer que si f est log-convexe sur I , alors elle est convexe sur I. La réciproque est-elle vraie ?
- 11°) On suppose que f est une application deux fois dérivable de I dans \mathbb{R}_+^* . Donner une condition nécessaire et suffisante portant sur les dérivées de f pour que f soit log-convexe.

Soit f et g deux applications de I dans \mathbb{R}_+^* que l'on suppose log-convexes.

- 12°) Montrer que fg est log-convexe.
- 13°) Déduire de la question 11 que, lorsque f et g sont deux fois dérivables, alors f+g est log-convexe.

On suppose à nouveau que f est une application que lconque de I dans \mathbb{R}_+^* .

- 14°) Montrer que f est log-convexe sur I si et seulement si pour tout $a \in \mathbb{R}$, l'application $x \longmapsto e^{ax} f(x)$ est convexe sur I.
- 15°) Démontrer le résultat de la question 13 sans supposer que f et g sont deux fois dérivables.

16°) Soit J un second intervalle de \mathbb{R} contenant au moins deux éléments.

Soit g une application de I dans J que l'on suppose convexe et h une application de J dans \mathbb{R} que l'on suppose convexe et croissante.

Montrer que $h \circ g$ est convexe.

Plus généralement, la composée de deux applications convexes est-elle toujours convexe?

17°) Montrer que f est log-convexe sur I si et seulement si pour tout $\alpha > 0$, $x \longmapsto f(x)^{\alpha}$ est convexe.

Partie III : Inégalité de Hölder

On fixe un réel p dans $]1, +\infty[$. \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

18°) Montrer qu'il existe un unique réel q non nul tel que $\frac{1}{p} + \frac{1}{q} = 1$. Montrer que, pour tout $x, y \in \mathbb{R}_+^*$, $\ln(\frac{x}{p} + \frac{y}{q}) \ge \frac{1}{p} \ln x + \frac{1}{q} \ln y$.

Soit $a, b \in \mathbb{R}$ avec a < b.

On note E l'ensemble des applications continues de [a, b] dans \mathbb{K} .

19°) Soit f et g deux éléments de E.

a) Montrer que $\int_{a}^{b} |f(t)g(t)| dt \le \frac{1}{p} \int_{a}^{b} |f(t)|^{p} dt + \frac{1}{q} \int_{a}^{b} |g(t)|^{q} dt$.

b) En déduire l'inégalité de Hölder : $\int_a^b |f(t)g(t)| \ dt \le \left(\int_a^b |f(t)|^p\right)^{\frac{1}{p}} \times \left(\int_a^b |g(t)|^q\right)^{\frac{1}{q}}.$

20°) Pour tout $f \in E$, on note $||f||_p = \left(\int_a^b |f(t)|^p dt\right)^{\frac{1}{p}}$.

Montrer que, pour tout $f, g \in E$, $||f + g||_p \le ||f||_p + ||g||_p$ (inégalité triangulaire).

21°) On suppose maintenant que p et q sont deux réels strictement positifs quelconques et on note r l'unique réel strictement positif tel que $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$.

Montrer que, pour tout $f, g \in E$, $||fg||_r \le ||f||_p ||g||_q$.

22°) Soit $n \in \mathbb{N}^*$, p_1, \dots, p_n n réels strictement positifs. On note r l'unique réel strictement positif tel que $\sum_{k=1}^n \frac{1}{p_k} = \frac{1}{r}$.

Montrer que, pour tout $f_1, \ldots, f_n \in E$, $\left\| \prod_{k=1}^n f_k \right\|_r \leq \prod_{k=1}^n \|f_k\|_{p_k}$.