DM 7 : un corrigé

Partie I : Les polynômes de Bernoulli

 $\mathbf{1}^{\circ}$) Soit $x \in \mathbb{R}$.

— D'après l'énoncé,
$$B_0(x) = 1$$
.

- Ainsi,
$$\int_0^x B_0(t) dt = x$$
, puis $\int_0^1 \left(\int_0^u B_0(t) dt \right) du = \int_0^1 u du = \frac{1}{2}$, donc $B_1(x) = x - \frac{1}{2}$.

— Ainsi,
$$2\int_0^x B_1(t) dt = x^2 - x$$
,

puis
$$2 \int_0^{10} \left(\int_0^u B_1(t) dt \right) du = \int_0^1 (u^2 - u) du = \frac{1}{3} - \frac{1}{2} = -\frac{1}{6},$$

donc $B_2(x) = x^2 - x + \frac{1}{6}.$

— Ainsi,
$$3\int_0^x B_2(t) dt = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x$$
,

puis
$$3 \int_0^1 \left(\int_0^u B_2(t) dt \right) du = \int_0^1 (u^3 - \frac{3}{2}u^2 + \frac{1}{2}u) du = \frac{1}{4} - \frac{1}{2} + \frac{1}{4} = 0,$$
donc $B_3(x) = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x$.

— Ainsi,
$$4\int_0^x B_3(t) dt = x^4 - 2x^3 + x^2$$
, puis

$$4\int_0^1 \left(\int_0^{J_0} B_3(t) dt \right) du = \int_0^1 (u^4 - 2u^3 + u^2) du = \frac{1}{5} - \frac{1}{2} + \frac{1}{3} = \frac{6 - 15 + 10}{30} = \frac{1}{30},$$

$$\text{donc } B_4(x) = x^4 - 2x^3 + x^2 - \frac{1}{30}.$$

 $\mathbf{2}^{\circ})$ Posons R(n) l'assertion suivante : B_n est un polynôme de degré n.

 $B_0 = 1$, donc R(0) est vraie.

Supposons que $n \in \mathbb{N}$ et que R(n) est vraie.

Pour tout $k \in \mathbb{N}$, pour tout $x \in \mathbb{R}$, $\int_0^x t^k dt = \frac{x^{k+1}}{k+1}$, donc d'après R(n),

$$x \longmapsto \int_0^x B_n(t) dt$$
 est un polynôme de degré $n+1$.

Or $B_{n+1}(x) = (n+1) \int_0^x B_n(t) dt + C$, où C est une constante indépendante de x, donc B_{n+1} est un polynôme de degré n+1.

3°) Soit $n \in \mathbb{N}^*$. D'après l'énoncé,

$$B_n(x) = n \int_0^x B_{n-1}(t) dt - C, \text{ où } C = n \int_0^1 \left(\int_0^u B_{n-1}(t) dt \right) du.$$

Ainsi,
$$\int_0^1 B_n(x) dx = n \int_0^1 \left(\int_0^x B_{n-1}(t) dt \right) du - C = C - C = 0.$$

 $4^{\circ})$

 \diamond Soit $n \in \mathbb{N}$. Notons R(n) l'assertion suivante :

pour tout $x \in \mathbb{R}$, $B_n(1-x) = (-1)^n B_n(x)$.

 $B_0 = 1$, donc R(0) est vraie.

 $B_1 = (x \longmapsto x - \frac{1}{2})$, donc pour tout $x \in \mathbb{R}$, $B_1(1-x) = \frac{1}{2} - x = -B_1(x)$, ce qui prouve R(1).

Soit $n \in \mathbb{N}^*$. Supposons que R(n) est vraie.

Soit $x \in \mathbb{R}$. D'après l'énoncé,

$$B_{n+1}(1-x) = (n+1) \int_0^{1-x} B_n(t) dt - C \text{ où } C = (n+1) \int_0^1 \left(\int_0^u B_n(t) dt \right) du.$$

En posant u = 1 - t, on obtient que $\int_0^{1-x} B_n(t) dt = \int_1^x B_n(1-u)(-du)$, donc d'après

$$R(n)$$
, $\int_0^{1-x} B_n(t) dt = (-1)^{n+1} \int_1^x B_n(u) du$, puis d'après la question 3, sachant que

$$n \in \mathbb{N}^*, \int_0^{1-x} B_n(t) dt = (-1)^{n+1} \Big(\int_1^x B_n(u) du + \int_0^1 B_n(u) du \Big), \text{ puis d'après la}$$

relation de Chasles,
$$\int_0^{1-x} B_n(t) dt = (-1)^{n+1} \int_0^x B_n(u) du$$
.

Ainsi,
$$B_{n+1}(1-x) = (-1)^{n+1}(n+1) \int_0^x B_n(t) dt - C.$$

Si n est impair, alors $(-1)^{n+1} = 1$,

donc
$$B_{n+1}(1-x) = (-1)^{n+1}((n+1)\int_0^x B_n(t) dt - C) = (-1)^{n+1}B_{n+1}(x).$$

Supposons maintenant que n est pair.

Alors
$$B_{n+1}(1-x) = -(n+1) \int_0^x B_n(t) dt - C = -B_{n+1}(x) - 2C$$
.

On en déduit que
$$\int_0^1 B_{n+1}(1-x) dx = -\int_0^1 B_{n+1}(x) dx - 2C$$
.

Or en posant
$$u = 1 - x$$
, $\int_0^1 B_{n+1}(1-x) dx = \int_1^0 B_{n+1}(u)(-du) = \int_0^1 B_{n+1}(u) du$,

donc
$$-2C = 2\int_0^1 B_{n+1}(x) dx = 0$$
, d'après la question précédente. Ainsi, $C = 0$

et on a encore
$$B_{n+1}(1-x) = (-1)^{n+1}((n+1)\int_0^x B_n(t) dt - C) = (-1)^{n+1}B_{n+1}(x)$$
, ce

qui prouve R(n+1) dans tous les cas.

- \diamond Supposons d'abord que n est pair. Ainsi, pour tout $t \in \mathbb{R}$, $B_n(1-t) = B_n(t)$, donc en remplaçant t par $\frac{1}{2} x$, on obtient que $B_n(\frac{1}{2} + x) = B_n(\frac{1}{2} x)$, ce qui prouve que le graphe de B_n est symétrique par rapport à la droite verticale d'équation $x = \frac{1}{2}$. Supposons maintenant que n est impair. Alors $B_n(\frac{1}{2} + x) = -B_n(\frac{1}{2} x)$, donc les deux points du graphe de B_n , de coordonnées $(\frac{1}{2} x, B_n(\frac{1}{2} x))$ et $(\frac{1}{2} + x, B_n(\frac{1}{2} + x))$, ont constamment pour milieu le point de coordonnées $(\frac{1}{2}, 0)$. Ainsi, le graphe de B_n est symétrique par rapport à ce dernier point.
- 5°) Soit $n \geq 2$. D'après l'énoncé, B_n est dérivable et $B'_n = nB_{n-1}$, or $n-1 \geq 1$, donc d'après la question 3, $0 = n \int_0^1 B_{n-1}(t) \ dt = \int_0^1 B'_n(t) \ dt = B_n(1) B_n(0)$. Ceci démontre que $B_n(1) = B_n(0) = b_n$.
- **6°)** On a en fait déjà montré cette propriété au sein de la récurrence de la question 4, lorsqu'on a prouvé que C=0 dans le cas où n était pair. On peut aussi écrire : Soit $n \in \mathbb{N}^*$. D'après la question 4,

 $B_{2n+1}(1) = B_{2n+1}(1-0) = (-1)^{2n+1}B_{2n+1}(0) = -b_{2n+1}$, or d'après la question précédente, $B_{2n+1}(1) = b_{2n+1}$, car $2n+1 \ge 2$. Ainsi, $b_{2n+1} = -b_{2n+1}$, donc $b_{2n+1} = 0$.

Partie II: la formule d'Euler-Maclaurin

7°)
$$B'_1 = 1$$
, donc B_1 est une primitive de 1. Ainsi, par intégration par parties, $\int_0^1 f(t) dt = [f(t)B_1(t)]_0^1 - \int_0^1 f'(t)B_1(t) dt$. Or $B_1(t) = t - \frac{1}{2}$, donc $B_1(0) = -\frac{1}{2}$ et $B_1(1) = \frac{1}{2}$. Ainsi, on a montré que $\int_0^1 f(t) dt = \frac{1}{2}(f(0) + f(1)) - \int_0^1 f'(t)B_1(t) dt$.

8°) Notons R(n) la propriété de l'énoncé. D'après la question précédente, R(0) est vraie. Soit $n \in \mathbb{N}$. On suppose R(n) et on montre R(n+1). En intégrant par parties, sachant que $\frac{B_{2n+2}}{2n+2}$ est une primitive de B_{2n+1} ,

$$\int_{0}^{1} f^{(2n+1)}(t)B_{2n+1}(t) dt = \left[f^{(2n+1)}(t) \frac{B_{2n+2}(t)}{2n+2} \right]_{0}^{1} - \int_{0}^{1} f^{(2n+2)}(t) \frac{B_{2n+2}(t)}{2n+2} dt.$$
Or $B_{2n+2}(1) = B_{2n+2}(0) = b_{2n+2}$, car $2n+2 \geq 2$, donc
$$\int_{0}^{1} f^{(2n+1)}(t)B_{2n+1}(t) dt = \frac{b_{2n+2}}{2n+2} (f^{(2n+1)}(1) - f^{(2n+1)}(0)) - \int_{0}^{1} f^{(2n+2)}(t) \frac{B_{2n+2}(t)}{2n+2} dt.$$
Une nouvelle intégration par parties donne
$$\int_{0}^{1} f^{(2n+2)}(t)B_{2n+2}(t) dt = \left[f^{(2n+2)}(t) \frac{B_{2n+3}(t)}{2n+3} \right]_{0}^{1} - \int_{0}^{1} f^{(2n+3)}(t) \frac{B_{2n+3}(t)}{2n+3} dt.$$
Or $B_{2n+3}(1) = B_{2n+3}(0) = 0$, d'après la question 6. Ainsi,
$$\int_{0}^{1} f^{(2n+2)}(t)B_{2n+2}(t) dt = -\int_{0}^{1} f^{(2n+3)}(t) \frac{B_{2n+3}(t)}{2n+3} dt.$$
En combinant ces deux calculs, on obtient

$$\int_{0}^{1} f^{(2n+1)}(t) B_{2n+1}(t) dt = \frac{b_{2n+2}}{2n+2} (f^{(2n+1)}(1) - f^{(2n+1)}(0)) + \int_{0}^{1} f^{(2n+3)}(t) \frac{B_{2n+3}(t)}{(2n+2)(2n+3)} dt.$$
Alors, d'après $R(n)$,
$$\int_{0}^{1} f(t) dt = \frac{1}{2} (f(0) + f(1)) - \sum_{k=1}^{n} (f^{(2k-1)}(1) - f^{(2k-1)}(0)) \frac{b_{2k}}{(2k)!}$$

$$- \frac{b_{2n+2}}{(2n+2)!} (f^{(2n+1)}(1) - f^{(2n+1)}(0)) - \frac{1}{(2n+3)!} \int_{0}^{1} f^{(2n+3)}(t) B_{2n+3}(t) dt,$$
ce qui démontre $R(n+1)$.

Le principe de récurrence permet de conclure.

9°) $B'_{2n+2}(x) = (2n+2)B_{2n+1}(x)$. Ainsi, $B'_{2n+2}(x)$ est de signe constant $]0, \frac{1}{2}[$, donc par continuité, $B'_{2n+2}(x)$ est de signe constant sur $[0, \frac{1}{2}]$ et s'annule au plus en 0 et en $\frac{1}{2}$. Ainsi, d'après le cours, B_{2n+2} est strictement monotone sur $[0, \frac{1}{2}]$. Elle s'annule donc au plus une fois sur $]0, \frac{1}{2}[$. De plus, si elle ne s'annulait pas sur $]0, \frac{1}{2}[$, d'après le théorème des valeurs intermédiaires, elle serait de signe constant sur $]0, \frac{1}{2}[$, puis par continuité

sur $[0, \frac{1}{2}]$. Mais nous allons montrer que $\int_0^{\frac{1}{2}} B_{2n+2}(t) dt = 0$, or B_{2n+2} est continue, donc si elle était de signe constant sur $[0, \frac{1}{2}]$, B_{2n+2} serait identiquement nulle sur $[0, \frac{1}{2}]$, ce qui est faux car c'est un polynôme de degré 2n+2. Ainsi B_{2n+2} s'annule une unique

fois sur $]0,\frac{1}{2}[\ldots$ si l'on montre que $\int_0^{\frac{1}{2}} B_{2n+2}(t) dt = 0$:

en posant x = 1 - t, on obtient $\int_0^{\frac{1}{2}} B_{2n+2}(t) dt = \int_1^{\frac{1}{2}} B_{2n+2}(1-x)(-dx)$, donc d'après la question 4, $\int_0^{\frac{1}{2}} B_{2n+2}(t) dt = \int_1^1 B_{2n+2}(x) dx$.

On en déduit que $0 = \int_0^1 B_{2n+2}(t) dt = 2 \int_0^{\frac{1}{2}} B_{2n+2}(t) dt$.

10°) Notons à nouveau R(n) la propriété de l'énoncé et démontrons-la par récurrence. $B_1(x) = x - \frac{1}{2}$, donc B_1 est strictement négatif sur $]0, \frac{1}{2}[$.

Alors d'après la question 9 avec n=0, B_2 est strictement monotone sur $[0,\frac{1}{2}]$ et B_2 s'annule une unique fois sur $[0,\frac{1}{2}]$, donc R(0) est vraie.

Soit $n \in \mathbb{N}$. Supposons R(n).

Supposons d'abord que B_{2n+2} est strictement croissante sur $[0, \frac{1}{2}]$ et notons c l'unique réel de $]0, \frac{1}{2}[$ tel que $B_{2n+2}(c) = 0$. Ainsi, $B_{2n+2}(x)$ est strictement négatif sur [0, c[et strictement positif sur $]c, \frac{1}{2}[$. Or $B'_{2n+3} = (2n+3)B_{2n+2}$, donc B_{2n+3} est strictement décroissante sur [0, c], avec $B_{2n+3}(0) = b_{2n+3} = 0$ d'après la question 6, puis elle est strictement croissante sur $[c, \frac{1}{2}]$, avec $B_{2n+3}(\frac{1}{2}) = 0$, car d'après la question 4, $B_{2n+3}(\frac{1}{2}) = (-1)^{2n+3}B_{2n+3}(1-\frac{1}{2}) = -B_{2n+3}(\frac{1}{2})$.

Ainsi, B_{2n+3} est strictement négative sur $]0, \frac{1}{2}[$.

Dans l'autre cas, lorsque B_{2n+2} est strictement décroissante sur $[0, \frac{1}{2}]$, en adaptant le raisonnement précédent, on montre que B_{2n+3} est strictement positive sur $]0, \frac{1}{2}[$.

Alors d'après la question 9, on en déduit que B_{2n+4} est strictement monotone sur $[0,\frac{1}{2}]$ et que B_{2n+4} s'annule une unique fois sur $]0,\frac{1}{2}[$, ce qui prouve R(n+1).

 11°) g étant continue sur le segment [0,1], elle est bornée et elle atteint ses bornes. Il existe donc $m, M \in [0, 1]$ tels que, pour tout $t \in [0, 1], g(m) \le g(t) \le g(M)$.

Soit $t \in [0,1]$. $h(t) \geq 0$, donc $g(m)h(t) \leq g(t)h(t) \leq g(M)h(t)$. Par croissance de l'intégrale, on en déduit que g(m) $\int_0^1 h(t) dt \le \int_0^1 g(t)h(t) dt \le g(M) \int_0^1 h(t) dt$.

Premier cas : si $\int_0^1 h(t) dt = 0$, alors d'après l'encadrement précédent,

$$\int_{0}^{1} g(t)h(t) \ dt = 0, \text{ et on peut écrire } \int_{0}^{1} g(t)h(t) \ dt = g(\frac{1}{2}) \int_{0}^{1} h(t) \ dt.$$

Second cas: si $\int_0^1 h(t) dt \neq 0$, alors h étant positive, $\int_0^1 h(t) dt > 0$, donc l'encadrement

devient $g(m) \leq \frac{\int_0^1 g(t)h(t) dt}{\int_0^1 h(t) dt} \leq g(M)$. Alors le théorème des valeurs intermédiaires,

valable ici car g est continue, permet de conclure.

12°) Soit $n \in \mathbb{N}$. Si l'on reprend la démonstration de la question 8, on voit qu'à partir de R(n), après la première intégration par parties, on a montré que

$$\int_{0}^{1} f(t) dt = \frac{1}{2} (f(0) + f(1)) - \sum_{k=1}^{n} (f^{(2k-1)}(1) - f^{(2k-1)}(0)) \frac{b_{2k}}{(2k)!}$$

$$- \frac{b_{2n+2}}{(2n+2)!} (f^{(2n+1)}(1) - f^{(2n+1)}(0)) + \frac{1}{(2n+2)!} \int_{0}^{1} f^{(2n+2)}(t) B_{2n+2}(t) dt$$

$$= \frac{1}{2} (f(0) + f(1)) - \sum_{k=1}^{n} (f^{(2k-1)}(1) - f^{(2k-1)}(0)) \frac{b_{2k}}{(2k)!}$$

$$+ \frac{1}{(2n+2)!} \int_{0}^{1} f^{(2n+2)}(t) (B_{2n+2}(t) - b_{2n+2}) dt.$$
Supposons que B_{2n+2} est strictement croissante sur $[0, \frac{1}{2}]$. Alors, pour tout $x \in [0, \frac{1}{2}]$,

 $B_{2n+2}(x) \ge B_{2n+2}(0) = b_{2n+2}.$

De plus si $x \in [\frac{1}{2}, 1]$, $1 - x \in [0, \frac{1}{2}]$, donc $B_{2n+2}(x) = (-1)^{2n+2} B_{2n+2}(1-x) = B_{2n+2}(1-x) \ge b_{2n+2}$,

donc $x \mapsto B_{2n+2}(x) - b_{2n+2}$ est positive sur [0,1].

D'après la question 10, dans l'autre cas, B_{2n+2} est strictement décroissante sur $\left[0,\frac{1}{2}\right]$. Alors un raisonnement similaire montre que $x \mapsto B_{2n+2}(x) - b_{2n+2}$ est négative sur [0, 1].

En question 11, le résultat est encore valable lorsque h est négative sur [0,1], car il suffit d'appliquer la question 11 avec -h. Or on a vu que dans tous les cas,

 $x \mapsto B_{2n+2}(x) - b_{2n+2}$ est de signe constant sur [0, 1], donc d'après la question 11 généralisée, il existe $c \in [0,1]$ tel que

$$\int_{0}^{1} f^{(2n+2)}(t)(B_{2n+2}(t) - b_{2n+2}) dt = f^{(2n+2)}(c) \int_{0}^{1} (B_{2n+2}(t) - b_{2n+2}) dt.$$
D'autre part, d'après la question 3, $\int_{0}^{1} B_{2n+2}(t) dt = 0$,
$$\operatorname{donc} \int_{0}^{1} f^{(2n+2)}(t)(B_{2n+2}(t) - b_{2n+2}) dt = -b_{2n+2}f^{(2n+2)}(c).$$
On a donc montré qu'il existe $c \in [0, 1]$ tel que
$$\int_{0}^{1} f(t) dt = \frac{1}{2} (f(0) + f(1)) - \sum_{k=1}^{n} (f^{(2k-1)}(1) - f^{(2k-1)}(0)) \frac{b_{2k}}{(2k)!} - \frac{b_{2n+2}}{(2n+2)!} f^{(2n+2)}(c).$$

Partie III : Développement asymptotique de $\sum_{p=1}^{N} \frac{1}{p}$.

- 13°) Soit $n \in \mathbb{N}$. Notons R(n) l'assertion suivante : $\frac{d^n}{dt^n} \left(\frac{1}{t+a} \right) = \frac{(-1)^n n!}{(t+a)^{n+1}}$. On vérifie facilement R(0) et $R(n) \Longrightarrow R(n+1)$, donc R(n) est vraie d'après le principe de récurrence.
- 14°) Soit $p \in \mathbb{N}^*$ et $n \in \mathbb{N}$. Appliquons la question 12 avec la fonction $f(t) = \frac{1}{t+p}$, qui est bien de classe C^{∞} sur [0,1].

On calcule $\int_0^1 f(t) dt = [\ln(t+p)]_0^1 = \ln(p+1) - \ln p$, donc d'après la question précédente, il existe $c \in [0,1]$ tel que

$$\ln(p+1) - \ln p = \frac{1}{2} \left(\frac{1}{p} + \frac{1}{p+1} \right) - \sum_{k=1}^{n} \left(\frac{(-1)^{2k-1}(2k-1)!}{(p+1)^{2k}} - \frac{(-1)^{2k-1}(2k-1)!}{p^{2k}} \right) \frac{b_{2k}}{(2k)!}$$

$$- \frac{b_{2n+2}}{(2n+2)!} \frac{(-1)^{2n+2}(2n+2)!}{(c+p)^{2n+3}}.$$

$$= \frac{1}{2} \left(\frac{1}{p} + \frac{1}{p+1} \right) + \sum_{k=1}^{n} \left(\frac{1}{(p+1)^{2k}} - \frac{1}{p^{2k}} \right) \frac{b_{2k}}{2k}$$

$$- \frac{b_{2n+2}}{(c+p)^{2n+3}},$$

ce qui conclut en posant $c_{p,n} = c + p \in [p, p+1]$.

15°) Soit $N \in \mathbb{N}^*$ et $n \in \mathbb{N}$. Sommons la relation de la question précédente lorsque p varie de 1 à N-1.

$$\sum_{p=1}^{N-1} (\ln(p+1) - \ln p) = \sum_{p=2}^{N} \ln p - \sum_{p=1}^{N-1} \ln p = \ln N - \ln 1 = \ln N.$$
 De plus,

$$\sum_{p=1}^{N-1} \left(\frac{1}{p+1} + \frac{1}{p} \right) = \sum_{p=2}^{N} \frac{1}{p} + \sum_{p=1}^{N-1} \frac{1}{p} = 2 \sum_{p=1}^{N} \frac{1}{p} - 1 - \frac{1}{N},$$

$$\operatorname{donc} \sum_{p=1}^{N-1} \frac{1}{2} \left(\frac{1}{p+1} + \frac{1}{p} \right) = \left(\sum_{p=1}^{N} \frac{1}{p} \right) - \frac{1}{2} - \frac{1}{2N}.$$

$$\sum_{p=1}^{N-1} \sum_{k=1}^{n} \left(\frac{1}{(p+1)^{2k}} - \frac{1}{p^{2k}} \right) \frac{b_{2k}}{2k} = \sum_{k=1}^{n} \frac{b_{2k}}{2k} \sum_{p=1}^{N-1} \left(\frac{1}{(p+1)^{2k}} - \frac{1}{p^{2k}} \right) = \sum_{k=1}^{n} \frac{b_{2k}}{2k} \left(\frac{1}{N^{2k}} - 1 \right),$$

donc on obtient bien $\ln N = \left(\sum_{n=1}^{N} \frac{1}{p}\right) - \frac{1}{2} - \frac{1}{2N} + \sum_{n=1}^{N} \left(\frac{1}{N^{2k}} - 1\right) \frac{b_{2k}}{2k} - b_{2n+2} \sum_{n=1}^{N-1} \frac{1}{c_{n}^{2n+3}}.$

 \diamond Pour tout $t \in [p-1, p], c_{p,n} \ge t$, donc $\frac{1}{c_{p,n}^{2n+3}} \le \frac{1}{t^{2n+3}}$. Alors, en intégrant entre p-1et p, on en déduit que $0 \le \frac{1}{c_{p,n}^{2n+3}} \le \int_{p-1}^{\nu} \frac{at}{t^{2n+3}}$.

 \diamond À l'aide de la relation de Chasles, on en déduit que, pour tout $N \geq 3, \ 0 \leq \sum_{n=1}^{N-1} \frac{1}{c_{p,n}^{2n+3}} \leq \frac{1}{c_1^{2n+3}} + \int_1^{N-1} \frac{dt}{t^{2n+3}} \leq 1 + \left[\frac{t^{-2n-2}}{-2n-2}\right]_1^{N-1} \leq 1 + \frac{1}{2n+2}$. Ceci démontre

que la suite $\left(\sum_{n=1}^{N-1} \frac{1}{c_{n,n}^{2n+3}}\right)_{N\geq 3}$ est majorée, or elle est croissante, donc elle converge vers

un réel que l'on peut noter S_n

En faisant tendre M vers $+\infty$, on en déduit que $0 \le S_n - \sum_{n=1}^{N-1} \frac{1}{c_{p,n}^{2n+3}} \le \frac{1}{(2n+2)(N-1)^{2n+2}}$

 17°) D'après la question 15.

$$\sum_{p=1}^{N} \frac{1}{p} = \ln N + \frac{1}{2} + \frac{1}{2N} - \sum_{k=1}^{n} \left(\frac{1}{N^{2k}} - 1\right) \frac{b_{2k}}{2k} + b_{2n+2} \sum_{p=1}^{N-1} \frac{1}{c_{p,n}^{2n+3}}$$

$$= \ln N + \frac{1}{2N} - \sum_{k=1}^{n} \frac{b_{2k}}{2kN^{2k}} + b_{2n+2} \left(\sum_{p=1}^{N-1} \frac{1}{c_{p,n}^{2n+3}} - S_n\right) + \gamma_n,$$

en posant $\gamma_n = \frac{1}{2} + \sum_{k=1}^{n} \frac{b_{2k}}{2k} + b_{2n+2}S_n$.

Fixons $n \in \mathbb{N}$. On a

$$\left(\sum_{p=1}^{N} \frac{1}{p}\right) - \ln N = \frac{1}{2N} - \sum_{k=1}^{n} \frac{b_{2k}}{2kN^{2k}} + b_{2n+2} \left(\sum_{p=1}^{N-1} \frac{1}{c_{p,n}^{2n+3}} - S_n\right) + \gamma_n \underset{N \to +\infty}{\longrightarrow} \gamma_n, \text{ donc}$$

 $\gamma_n = \lim_{N \to +\infty} \left(\sum_{p=1}^N \frac{1}{p} - \ln N \right)$. Ceci prouve que γ_n ne dépend pas de n. On notera γ cette

constante indépendante de n et de N. Ainsi,

$$\sum_{n=1}^{N} \frac{1}{p} = \ln N + \gamma + \frac{1}{2N} - \sum_{k=1}^{n} \frac{b_{2k}}{2kN^{2k}} + \frac{b_{2n+2}}{2n+2} R_{n,N}, \text{ avec } R_{n,N} = (2n+2) \Big(\sum_{n=1}^{N-1} \frac{1}{c_{p,n}^{2n+3}} - S_n \Big).$$

D'après la question précédente, $|R_{n,N}| \leq \frac{1}{(N-1)^{2n+2}}$