Feuille d'exercices 15. Topologie

Exercice 15.1 : (niveau 1)

Montrer que $U = \{(x, y, z) \in \mathbb{R}^3 / \ln(x^2 + y^2 + 1)\sin(z) < e^{x+z} \text{ et } x + y - z > 1\}$ est un ouvert de \mathbb{R}^3 .

Exercice 15.2 : (niveau 1)

Montrer que $\{x+iy\in\mathbb{C}\ /\ x,y\in\mathbb{R},\ x^2+y^2\leq 3,\ x^3+y^3-3xy\geq 0\}$ est un compact de \mathbb{C} .

Exercice 15.3 : (niveau 2)

Si F est un fermé d'un espace métrique, montrer qu'il existe une suite décroissante d'ouverts $(U_n)_{n\in\mathbb{N}}$ telle que $F=\bigcap_{n\in\mathbb{N}}U_n$.

Exercice 15.4 : (niveau 2)

On note $E = l^{\infty}(\mathbb{R})$ et $F = \mathbb{R}^{(\mathbb{N})}$. F est-il un ouvert ou un fermé de E?

Exercice 15.5 : (niveau 2)

Soit X un espace métrique compact.

Montrer que X possède une partie dense et dénombrable.

Exercice 15.6: (niveau 2)

Soit A une partie non vide d'un espace vectoriel normé E.

On note $\delta(A)$ le diamètre de A.

Montrer que $\delta(A) = \delta(\overline{A})$. A-t-on $\delta(A) = \delta(\overset{\circ}{A})$?

Exercice 15.7: (niveau 2)

Soit F un sous-espace vectoriel d'un \mathbb{K} -espace vectoriel normé E tel que $\overset{\circ}{F} \neq \emptyset$. Montrer que F = E.

Exercice 15.8 : (niveau 2)

E est un K-espace vectoriel normé et F est un fermé de E.

 1°) Soit K une partie compacte de E.

Montrer que $F + K = \{f + k/(f, k) \in F \times K\}$ est fermé.

2°) On pose $F = \{(x,0)/x \in \mathbb{R}\}$ et $K = \{(x,e^x)/x \in \mathbb{R}\}$. Montrer que F et K sont deux fermés de \mathbb{R}^2 mais que F + K n'est pas fermé dans \mathbb{R}^2 .

Exercice 15.9 : (niveau 2)

Soit A et B deux ouverts d'un espace vectoriel normé E.

Montrer que A + B est ouvert. Est-ce vrai avec des fermés?

Exercice 15.10 : (niveau 2)

Soit A une partie d'un \mathbb{K} -espace vectoriel normé E. Montrer que \overline{A} est compact si et seulement si toute suite d'éléments de A admet une valeur d'adhérence **dans** E.

Exercice 15.11 : (niveau 2)

Soit E un espace vectoriel normé et P une partie de E.

On dit que P est discrète si et seulement si tous les points de P sont des points isolés de P.

La réunion de deux parties discrètes est-elle toujours discrète?

Montrer que la réunion de deux parties discrètes et fermées est discrète et fermée.

Exercice 15.12 : (niveau 2)

Soit A une partie convexe d'un espace vectoriel normé E.

Montrer que $\overset{\circ}{A}$ et \overline{A} sont aussi convexes.

Exercice 15.13: (niveau 3)

Théorème du point fixe. Soit A une partie complète non vide d'un espace métrique E et $f: A \longrightarrow A$ une application k-contractante où $k \in [0, 1[$.

- 1°) Montrer qu'il existe au plus un vecteur $l \in E$ tel que f(l) = l (on dit que l est un point fixe de f).
- **2°)** Soit $(x_n) \in A^{\mathbb{N}}$ une suite vérifiant la relation de récurrence suivante : $\forall n \in \mathbb{N}$ $x_{n+1} = f(x_n)$, avec $x_0 \in A$.
- a) Montrer que, pour tout $n \in \mathbb{N}$, $d(x_n, x_{n+1}) \leq k^n d(x_0, x_1)$.
- b) Montrer que (x_n) converge et que sa limite est un point fixe de f.

Exercice 15.14 : (niveau 3)

On note E l'ensemble des applications continues de [0,1] dans \mathbb{R} , que l'on munit de la norme infinie (norme de la convergence uniforme).

1°) Pour tout
$$n \in \mathbb{N}$$
, on note
$$P_n: [0,1] \longrightarrow \mathbb{R}$$
$$x \longmapsto \sum_{k=0}^n \frac{x^k}{k!}.$$

Déterminer la limite de la suite (P_n) d'éléments de $\stackrel{k=0}{E}$.

- **2°)** On note \mathcal{P} l'ensemble des applications polynomiales de [0,1] dans \mathbb{R} . Montrer que \mathcal{P} n'est pas complet.
- **3°)** Montrer que $(E, ||.||_{\infty})$ est un espace complet.

Exercice 15.15 : (niveau 3)

Soit U un ouvert non vide de \mathbb{R} . On considère la relation \mathcal{U} sur U définie par :

$$\forall x, y \in U, \ (x \ \mathcal{U} \ y) \iff ([x, y] \subset U),$$

où [x, y] désigne le segment joignant x à y même lorsque x > y.

- 1°) Démontrer que \mathcal{U} est une relation d'équivalence sur U.
- 2°) Démontrer que les classes d'équivalence de U sont des intervalles ouverts de \mathbb{R} . Justifier que l'ensemble quotient U/\mathcal{U} est dénombrable.
- 3°) Qu'a-t-on ainsi démontré?

Exercice 15.16: (niveau 3)

 $l^{\infty}(\mathbb{R})$ désigne l'ensemble des suites bornées de réels ; c'est un espace vectoriel normé si on le munit de la norme infinie.

Parmi les ensembles suivants, déterminer lesquels sont des fermés de $l^{\infty}(\mathbb{R})$:

- l'ensemble des suites croissantes bornées,
- ♦ l'ensemble des suites bornées admettant 0 pour valeur d'adhérence,
- \diamond l'ensemble \mathcal{P}_T des suites T-périodiques, où $T \in \mathbb{N}^*$,
- \diamond la réunion $\bigcup_{T \in \mathbb{N}^*} \mathcal{P}_T$.

Exercices supplémentaires:

Exercice 15.17: (niveau 1)

Si A est dense dans B et si B est dense dans C, montrer que A est dense dans C.

Exercice 15.18: (niveau 2)

Soit A une partie non vide de E (où E est un espace vectoriel normé). Si $\alpha \in \mathbb{R}_+^*$, on note $B(A, \alpha) = \{x \in E/d(x, A) < \alpha\}$.

- 1°) Montrer que $B(A, \alpha) = \bigcup_{x \in A} B_o(x, \alpha)$.
- **2**°) Montrer que $\overline{A} = \bigcap_{\alpha>0} B(A,\alpha)$.
- $\mathbf{3}^{\circ}$) En déduire que \overline{A} est une intersection dénombrable d'ouverts.

Exercice 15.19: (niveau 2)

On suppose que A est une partie dense de B.

Soit $p \in \mathbb{N}^*$ et a_1, \ldots, a_p p éléments de A.

Montrer que $A \setminus \{a_1, \ldots, a_p\}$ est dense dans $B \setminus \{a_1, \ldots, a_p\}$.

Exercice 15.20: (niveau 2)

Montrez que si U et V sont deux ouverts disjoints d'un espace vectoriel normé, alors $\overset{\circ}{\overline{U}} \cap \overset{\circ}{\overline{V}} = \emptyset$.

Exercice 15.21 : (niveau 2)

On se place dans un espace vectoriel normé noté E. Soit P une partie de E.

On dit que P est discrète si et seulement si tous ses points sont des points isolés de P. Montrer qu'une partie P d'un espace vectoriel normé E est discrète et fermée si et seulement si il n'existe aucun point d'accumulation de P.

Exercice 15.22 : (niveau 2)

A est un ouvert d'un espace vectoriel normé E et $B \in \mathcal{P}(E)$.

- $\mathbf{1}^{\circ}$) Montrer que $A \cap \overline{B} \subset \overline{A \cap B}$.
- **2°)** Montrer que $A \cap B = \emptyset \Rightarrow A \cap \overline{B} = \emptyset$.
- **3°)** Si B est dense dans E, montrer que $\overline{A \cap B} = \overline{A}$.
- **4°)** Si A et B sont denses dans E, montrer que $A \cap B$ est dense dans E.
- 5°) Donner un exemple de parties denses dont l'intersection n'est pas dense.

Exercice 15.23: (niveau 2)

E est un \mathbb{K} -espace vectoriel normé, où \mathbb{K} est égal à \mathbb{R} ou \mathbb{C} . A et B sont deux parties de E. On suppose que A est ouvert. Montrer que $\overline{A \cap B} = \overline{A \cap \overline{B}}$.

Exercice 15.24 : (niveau 2)

On dit qu'un point a d'une partie A est isolé dans A si et seulement si il existe un voisinage V de a tel que $V \cap A = \{a\}$.

Soit A une partie sans point isolé. Soit B une partie dense dans A. Soit $p \in \mathbb{N}^*$ et b_1, \ldots, b_p éléments de B. Montrer que $B \setminus \{b_1, \ldots, b_p\}$ est dense dans A.

Exercice 15.25 : (niveau 2)

On dit qu'un point a d'une partie A est isolé dans A si et seulement si il existe un voisinage V de a tel que $V \cap A = \{a\}$.

Soit A une partie sans point isolé. Soit B une partie dense dans A. Montrer que pour tout $a \in A$ et pour tout voisinage V de a, $V \cap B$ est infini.

Exercice 15.26: (niveau 2)

Soient E un \mathbb{K} -espace vectoriel normé et A une partie de E. On dit que $l \in E$ est un point d'accumulation de A si et seulement si $l \in \overline{A \setminus \{l\}}$.

Montrer que l'ensemble des points d'accumulation de A est un fermé.

Exercice 15.27: (niveau 2)

On munit $C([0,1],\mathbb{R})$ de la norme de la convergence en moyenne.

1°) Pour tout entier $n \geq 3$, on note f_n l'élément de E défini par les relations suivantes. $f_n(t) = 0$ lorsque $t \in [0, \frac{1}{2}]$, $f_n(t) = n(t - \frac{1}{2})$ lorsque $t \in [\frac{1}{2}, \frac{1}{2} + \frac{1}{n}]$ et $f_n(t) = 1$ lorsque $t \in [\frac{1}{2} + \frac{1}{n}, 1]$.

Montrer que f_n est une suite de Cauchy de E.

 2°) Montrer que E n'est pas un espace de Banach.

Exercice 15.28: (niveau 2)

Soient A et B deux parties d'un espace vectoriel normé E.

 $\text{Montrer que } \overline{\overline{A \cup B}} = \overline{\overline{A}} \cup \overline{\overline{B}}.$

Exercice 15.29 : (niveau 2)

Pour quels réels α l'ensemble $\{m^{\alpha} \operatorname{argsh}(n) / m, n \in \mathbb{N}^*\}$ est-il dense dans \mathbb{R}_+ ?

Exercice 15.30: (niveau 3) Montrer que $l^1(\mathbb{C})$ est un espace de Banach.

Exercice 15.31: (niveau 3) On note $E = l^1(\mathbb{C}) = \{(z_n) \in \mathbb{C}^{\mathbb{N}} / \sum |z_n| \text{ CV } \}$ et on

note A l'ensemble des suites géométriques (u_n) de E telles que $\sum_{n=0}^{+\infty} u_n = 1$.

A est-il fermé? A est-il ouvert?

Exercice 15.32: (niveau 3) Soit S un ensemble non dénombrable de réels.

- 1°) Montrer que S admet au moins un point d'accumulation ℓ , ce qui signifie que $\ell \in \overline{S \setminus \{\ell\}}$.
- 2°) Montrer que S possède au moins un ensemble dénombrable de points d'accumulation.
- 3°) Montrer que l'ensemble des points d'accumulation est un fermé.
- 4°) Montrer que l'ensemble des points d'accumulation de S n'est pas dénombrable.