DM 44: Fonctions absolument monotones

Lorsque I est un intervalle de $\mathbb R$ d'intérieur non vide,

- si f est une application de I dans \mathbb{R} ,
 - on dira que f est positive et on écrira $f \ge 0$ si et seulement si, pour tout $x \in I$, $f(x) \ge 0$;
 - on dira que f est absolument monotone si et seulement si f est de classe C^{∞} et si, pour tout $n \in \mathbb{N}$, $f^{(n)} \geq 0$.

Partie I: Généralités

On fixe dans cette partie un intervalle I d'intérieur non vide.

- 1°) Si f est une application de I dans \mathbb{R} absolument monotone, montrer que f est positive, croissante et convexe.
- **2°)** Si f et g sont deux applications de I dans \mathbb{R} absolument monotones, montrer que f+g et fg sont également absolument monotones.
- **3°)** Soit J un second intervalle de \mathbb{R} d'intérieur non vide. On suppose que f est une application de I dans \mathbb{R} et que g est une application de J dans I. Montrer que si f et g sont absolument monotones, alors $f \circ g$ est aussi absolument monotone.

Partie II: exemples

- **4°)** Montrer que l'application tangente est absolument monotone sur $[0, \frac{\pi}{2}[$.
- **5°)** Pour tout $x \in]0,1[$, on pose $g(x) = \frac{1}{2} \left(\frac{1}{1-x} \frac{1}{1+x} \right)$. Montrer que g est absolument monotone sur]0,1[.
- 6°) En déduire que arcsin est absolument monotone sur]0,1[.

Partie III: Fonctions totalement monotones

On note E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} . Pour tout $h \in \mathbb{R}$, on note τ_h l'application de E dans E définie par : pour tout $f \in E$, pour tout $x \in \mathbb{R}$, $\tau_h(f)(x) = f(x+h)$.

7°) Montrer que, pour tout $h \in \mathbb{R}$, τ_h est un automorphisme de l'espace vectoriel E.

Pour tout $h \in \mathbb{R}$, on pose $\Delta_h = \tau_h - Id_E$.

Pour tout $n \in \mathbb{N}$, on note Δ_h^n la composée de Δ_h avec elle-même n fois.

8°) Montrer que pour tous $n \in \mathbb{N}$, $h \in \mathbb{R}$, $f \in E$ et $x \in \mathbb{R}$,

$$\Delta_h^n(f)(x) = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} f(x+kh).$$

 $\mathbf{9}^{\circ})~$ Soit $f\in E.$ On suppose que f est dérivable. Montrer que,

pour tout
$$h \in \mathbb{R}$$
, $n \in \mathbb{N}$ et $x \in \mathbb{R}$, $\frac{d}{dh}(\Delta_h^{n+1}(f)(x)) = (n+1)\Delta_h^n(f')(x+h)$.

Lorsque $f \in E$, on dira que f est totalement monotone si et seulement si pour tout $h \in \mathbb{R}_+^*$ et $n \in \mathbb{N}$, $\Delta_h^n(f) \geq 0$.

10°) Soit $f \in E$. On suppose que f est de classe C^{∞} et qu'elle est absolument monotone sur \mathbb{R} . Montrer que f est totalement monotone.

Partie IV: totalement monotone \iff absolument monotone

- 11°) Pour $f \in E$ que l'on suppose de classe C^{∞} , énoncer et démontrer la formule de Taylor avec reste intégral entre deux réels a et b.
- 12°) Soit $n \in \mathbb{N}$. Déduire du calcul des dérivées successives en 0 de l'application $t \longmapsto (e^t 1)^n$ que, pour tout $j \in \{0, \dots, n\}$, $\sum_{k=0}^n (-1)^{n-k} \binom{n}{k} \frac{k^j}{j!} = \begin{cases} 0 \text{ si } j < n \\ 1 \text{ si } j = n \end{cases}$.
- 13°) Soit $f \in E$ une application de classe C^{∞} . On suppose que f est totalement monotone. Montrer que f est absolument monotone.
- 14°) Soit $f \in E$ une application que l'on suppose continue. On suppose également que, pour tout $h \in \mathbb{R}_+^*$, $\Delta_h^2(f) \geq 0$. Montrer que f est convexe.
- 15°) Soit $f \in E$ que l'on suppose totalement monotone. Montrer que f est convexe.

Partie V : Développement en série entière

16°) Soit $a, b \in \mathbb{R}$ avec a < b. Soit f une application absolument monotone de]a, b[dans \mathbb{R} . Montrer que f se prolonge sur [a, b[en une application absolument monotone. Peut-on également prolonger f sur [a, b]?

Soit b un réel strictement positif.

Sauf pour la dernière question, on suppose que f est une application absolument monotone de [0, b[dans \mathbb{R} .

17°) En utilisant la formule de Taylor avec reste intégral, montrer que, pour tout $t \in [0, b[$, la série $\sum \frac{f^{(n)}(0)}{n!} t^n$ est convergente.

Pour tout $t \in [0, b[$ et $n \in \mathbb{N}$, on note $\rho_n(t) = \int_0^t \frac{(t-x)^n}{n!} f^{(n+1)}(x) \ dx$.

- **18°)** Soit $t, t' \in \mathbb{R}$ tels que 0 < t < t' < b.

 Montrer que pour tout $n \in \mathbb{N}$, $\frac{\rho_n(t)}{t^n} \le \frac{\rho_n(t')}{t'^n}$.
- 19°) En déduire que f est développable en série entière sur [0, b[, c'est-à-dire qu'il existe une suite $(a_n)_{n\in\mathbb{N}}$ de réels telle que, pour tout $t\in[0, b[$, $f(t)=\sum_{n=0}^{+\infty}a_nt^n$.
- **20**°) Soit $b \in \mathbb{R}_+^*$. On suppose que f est une application absolument monotone de]-b,b[dans \mathbb{R} . Montrer que f est développable en série entière sur]-b,b[.