Feuille d'exercices 18. Correction de trois exercices

Exercice 18.15:

- 1°) Supposons que $f_{/[a,b]}$ est injective. f étant dérivable, elle est continue. On sait alors que $f_{/[a,b]}$ est strictement monotone. Mais f'(a) < 0, donc $f'(b) \le 0$, ce qui est faux. Ainsi, $f_{/[a,b]}$ n'est pas injective, donc il existe $(\alpha,\beta) \in [a,b]^2$ avec $\alpha < \beta$ tel que $f(\alpha) = f(\beta)$. D'après le lemme de Rolle, il existe $c \in]\alpha,\beta[\subset]a,b[$ tel que f'(c) = 0.
- **2°)** Une partie de \mathbb{R} est un intervalle si et seulement si elle est convexe. Il s'agit donc de montrer que, si $(A, B) \in f'(I)^2$ avec A < B, $[A, B] \subset f'(I)$.

Soit $C \in]A, B[$. Il existe $(a, b) \in I^2$ tel que A = f'(a) et B = f'(b).

$$f'(a) - C = A - C < 0$$
 et $f'(b) - C > 0$.

Notons g(t) = f(t) - Ct. g est définie et dérivable sur I. De plus, g'(a) < 0 et g'(b) > 0. Appliquons le résultat de la première question en substituant f par g. Il existe $c \in]a, b[$ tel que g'(c) = 0. Or g'(c) = f'(c) - C, donc $C = f'(c) \in f'(I)$. Ainsi, $[A, B] \subset f'(I)$.

Exercice 18.16:

Posons $f(x) = \sqrt{2-x}$. f est décroissante et continue sur $]-\infty,2]$.

- \diamond Si $x_0 > 2$, x_1 n'est pas défini.
- \diamond Si $x_0 < -2$, x_2 n'est pas défini.
- \diamond Pour la suite, on suppose que $x_0 \in [-2, 2]$.

 $f([-2,2]) = [0,2] \subset [-2,2]$, donc la suite (x_n) est bien définie et elle est à valeurs dans [-2,2].

$$f(l) = l \iff l = \sqrt{2-l} \iff (l \ge 0 \text{ et } l^2 + l - 2 = 0). \text{ Or } l^2 + l - 2 = (l-1)(l+2),$$

donc $f(l) = l \iff l = 1.$

• Première méthode : Graphiquement, on devine que $x_n \xrightarrow[n \to +\infty]{} 1$. On démontre alors cette propriété par majoration de $|x_n - 1|$.

 $f([0,2]) = [0,\sqrt{2}]$, donc dès que $n \ge 2, x_n \in [0,\sqrt{2}]$. Alors,

$$|x_{n+1} - 1| = |\sqrt{2 - x_n} - 1| = |\frac{2 - x_n - 1}{\sqrt{2 - x_n} + 1}| \le \frac{|x_n - 1|}{\sqrt{2 - \sqrt{2} + 1}},$$

donc $|x_n - 1| \le \frac{|x_2 - 1|}{(\sqrt{2 - \sqrt{2} + 1})^{n-2}} \xrightarrow[n \to +\infty]{} 0$, ce qui prouve que $x_n \xrightarrow[n \to +\infty]{} 1$.

• Deuxième méthode : On étudie $f \circ f$. On suppose que $x_0 \in [0, \sqrt{2}]$. $f \circ f(x) \ge x \iff x^2 \le 2 - \sqrt{2 - x} \iff 2 - x^2 \ge \sqrt{2 - x} \iff 4 + x^4 - 4x^2 \ge 2 - x$, donc $f \circ f(x) \ge x \iff x^4 - 4x^2 + x + 2 \ge 0 \iff (x - 1)(x^3 + x^2 - 3x - 2) \ge 0 \iff (x - 1)(x + 2)(x^2 - x - 1) \ge 0$.

 $\Delta = 5$, donc les racines de $x^2 - x - 1$ sont $\frac{1 \pm \sqrt{5}}{2}$, ainsi, sur $[0, \sqrt{2}]$, $x^2 - x - 1 < 0$. Supposons que $x_0 \in [0, 1[$. [0, 1] est stable par $\bar{f} \circ f$, donc pour tout $n \in \mathbb{N}$, $x_{2n} \in [0, 1]$. De plus, sur [0,1], $f \circ f(x) - x \ge 0$, donc (x_{2n}) est croissante et majorée par 1. Ainsi cette suite converge vers un point fixe de $f \circ f$, qui en l'occurrence est nécessairement 1. Ainsi, $x_{2n} \xrightarrow[n \to +\infty]{} 1$. De même, on montre que $x_{2n+1} \xrightarrow[n \to +\infty]{} 1$.

Le cas où $x_0 \in]1, \sqrt{2}]$ se traite de la même façon.

Exercice 18.43 :

Les polynômes sont solutions du problème. Il s'agit de montrer que ce sont les seules. ♦ Commençons par établir le lemme suivant :

Si f est une application non polynomiale de classe C^{∞} sur un intervalle I infini, alors il existe $a, b \in I$ avec a < b tels que $f|_{[a,b]}$ est non polynomiale et ne s'annule jamais. En effet:

— prop 1 : Soit f une application qui coïncide avec un polynôme P sur un intervalle [a,b] (avec a < b) et avec un polynôme Q sur un intervalle [c,d] (avec c < d). Si $[a, b] \cap [c, d] \neq \emptyset$, alors P = Q.

 $D\acute{e}monstration : si [a, b] \cap [c, d]$ est infini, P - Q possède une infinité de racines, donc P = Q.

Sinon, $[a,b] \cap [c,d]$ étant un intervalle (cours) non vide, il est réduit à un singleton, donc en supposant que a < b et que c < d, on a b = c ou bien d = a. Sans perte de généralité, supposons que a < b = c < d.

D'après la formule de Taylor pour les polynômes, au voisinage de b,

D'après la formule de Taylor pour les polynômes, au voisinage de
$$b$$
,
$$P(x) = \sum_{n \in \mathbb{N}} \frac{(x-b)^n}{n!} P^{(n)}(b) = f(x) \text{ lorsque } x \text{ est au voisinage à gauche de } b$$

et
$$Q(x) = \sum_{n \in \mathbb{N}} \frac{(x-b)^n}{n!} Q^{(n)}(b) = f(x)$$
 lorsque x est au voisinage à droite de

b. Alors, par unicité du développement limité et d'après la formule de Taylor-Young, pour tout $n \in \mathbb{N}$, $P^{(n)}(b) = f^{(n)}(b) = Q^{(n)}(b)$, donc P = Q.

prop 2 : Soit $a \in \mathbb{R}$ et b > x, soit $f : [a, b] \longrightarrow \mathbb{R}$ de classe C^{∞} . On suppose que pour tout $x \in]a, b[, f|_{[a,x]}$ est polynomiale. Alors $f|_{[a,b]}$ est polynomiale. Démonstration : par hypothèse, pour tout $x \in]a,b[, f|_{[a,x]}$ coïncide avec un polynôme P_x , mais d'après la prop 1, pour tout $x, y \in]a, b[, P_x = P_y]$. Notons Pce polynôme commun.

Pour tout $x \in [a, b[, f(x) = f|_{[a,x]}(x) = P(x), \text{ donc } f_{[a,b[} \text{ coïncide avec le po-}$ lynôme P. Par continuité, c'est encore vrai en b.

Démontrons le lemme : f est non polynomiale, donc elle n'est pas identiquement nulle : il existe $a \in I$ tel que $f(a) \neq 0$.

Si pour tout $x \in I \setminus \{a\}$, $f|_{[a,x]}$ est polynomiale, en adaptant la propriété 2, on montre que f est polynomiale sur I, ce qui est faux, donc il existe $x \in I \setminus \{a\}$ tel que $f|_{[a,x]}$ est non polynomiale.

Sans perte de généralité, on supposera que x > a.

Posons $s = \sup\{x \in I \cap [a, +\infty[\ /\ f_{[a,x]} \text{ est polynomiale}\} : s \text{ existe car l'ensemble}\}$ est non vide (il contient a) et il est majoré par x.

D'après la propriété 2, $f_{[a,s]}$ est polynomiale.

- Supposons d'abord que s=a. Par continuité de f, il existe $\varepsilon>0$ tel que $a + \varepsilon \in I$ et $f_{[a,a+\varepsilon]}$ ne s'annule jamais. Or s = a, donc $f_{[a,a+\varepsilon]}$ n'est pas polynomiale. Le lemme est démontré dans ce cas.
 - Pour la suite, on suppose que s > a.
- Supposons que $f(s) \neq 0$. Par continuité de f, il existe $\varepsilon > 0$ tel que $[s-\varepsilon,s+\varepsilon]\subset I$ et $f_{[s-\varepsilon,s+\varepsilon]}$ ne s'annule jamais. De plus d'après la propriété 1, si $f_{[s-\varepsilon,s+\varepsilon]}$ était polynomiale, $f_{[a,s+\varepsilon]}$ serait aussi polynomiale, ce qui contredit la définition de s. Le lemme est démontré dans ce cas.
- Supposons maintenant que f(s) = 0.

Notons P le polynôme avec lequel f coïncide sur [a, s]. D'après la formule de Taylor pour les polynômes, pour tout $x \in [a, s]$,

$$f(x) = P(x) = \sum_{n \in \mathbb{N}} \frac{(x-s)^n}{n!} P^{(n)}(s)$$
, donc d'après la formule de Taylor-Young

et l'unicité du développement limité, pour tout $n \in \mathbb{N}$, $f^{(n)}(s) = P^{(n)}(s)$. Or P est non nul (car $f(a) \neq 0$), donc il existe $n \in \mathbb{N}$ tel que $f^{(n)}(s) = P^{(n)}(s) \neq 0.$

Notons alors $k = \min\{n \in \mathbb{N} \mid f^{(n)}(s) \neq 0\}$. D'après la formule de Taylor-Young, lorsque h tend vers 0, $f(s+h) = \frac{h^k}{k!}(f^{(k)}(s) + \alpha(h))$, où $\alpha(h) \xrightarrow[h \to 0]{} 0$.

Il existe $\varepsilon > 0$ tel que $s + \varepsilon \in I$ et tel que pour tout $h \in [0, \varepsilon]$,

 $|\alpha(h)| < |f^{(k)}(s)|$. Alors $f_{|s,s+e|}$ ne s'annule jamais et elle est non polynomiale d'après la propriété 1 et la définition de s. Alors d'après une variante de la propriété 2, il existe $s' \in]s, s + \varepsilon[$ tel que $f_{[s',s+\varepsilon]}$ est non polynomiale (et ne s'annule jamais). Le lemme est également démontré dans ce cas.

Soit f une application de classe C^{∞} , non polynomiale, de \mathbb{R} dans \mathbb{R} .

Nous allons construire deux suites (a_N) et (b_N) de réels telles que

- (a_N) est croissante et (b_N) est décroissante;
- pour tout $N \in \mathbb{N}$, $a_N < b_N$ et, $f_{[a_N,b_N]}$ est non polynomiale;
- pour tout $N \in \mathbb{N}$, pour tout $x \in [a_N, b_N]$, pour tout $n \leq N$, $f^{(n)}(x) \neq 0$.

Initialisation: D'après le lemme, il existe a_0, b_0 tel que $a_0 < b_0, f_{[a_0,b_0]}$ est non polynomiale et ne s'annule jamais.

 $H\acute{e}r\acute{e}dit\acute{e}:$ Supposons construits $(a_n)_{0\leq n\leq N}$ et $(b_n)_{0\leq n\leq N}$.

 $f_{[a_N,b_N]}$ est C^{∞} et non polynomiale, donc $f^{(N+1)}|_{[a_N,b_N]}$ est également non polynomiale (sinon par primitivations successives, $f_{[a_N,b_N]}$ serait polynomiale). D'après le lemme, il existe $a_{N+1}, b_{N+1} \in [a_N, b_N]$ avec $a_{N+1} < b_{N+1}$ tels que $f^{(N+1)}|_{[a_{N+1}, b_{N+1}]}$ est non polynomiale et ne s'annule jamais. Alors $f|_{[a_{N+1},b_{N+1}]}$ est également non polynomiale (sinon par dérivation $f^{(N+1)}|_{[a_{N+1},b_{N+1}]}$ serait polynomiale) et pour tout $n \leq N+1$, $f^{(n)}$ ne s'annule jamais sur $[a_{N+1}, b_{N+1}]$.

 \diamond La suite (a_N) est croissante et majorée par b_0 , donc elle converge vers $a \in \mathbb{R}$.

De même, $b_n \xrightarrow[n \to +\infty]{} b \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, $a_n \leq b_n$, donc par passage à la limite, $a \leq b$. Ainsi, pour tout $n \in \mathbb{N}$, $[a,b] \subset [a_n,b_n]$. On en déduit que, pour tout $n \in \mathbb{N}$, $f^{(n)}(a) \neq 0$. Ceci démontre que lorsque

On en déduit que, pour tout $n \in \mathbb{N}$, $f^{(n)}(a) \neq 0$. Ceci démontre que lorsque f est non polynomiale sur \mathbb{R} , on a $\neg(\forall x \in \mathbb{R}, \exists n_x \in \mathbb{N}, f^{(n_x)}(x) = 0)$, ce qui conclut.