Correction du DM 46

Afin de pré-corriger votre devoir, merci de tenir compte des commentaires qui suivent et de vous référer au corrigé type présent sur le site. Après la pré-correction, veuillez scanner page à page votre copie, dans le bon sens et déposer sur mon site le fichier au format .pdf.

- 4°) Étudiez de près le corrigé, c'est une question délicate où il est facile de commettre des erreurs ou des omissions.
- $\mathbf{9}^{\circ}$) Pour calculer $a, b \in \mathbb{R}$ tels que $(a+ib)^2 = 3-4i$, pensez à utiliser la relation $a^2 + b^2 = |3-4i| = 5$, qui simplifie les calculs.
- 11°) Pour montrer que $x \mapsto \frac{R(x)}{x^n} = 1 \sum_{k=0}^{n-1} |a_k| x^{k-n}$ est strictement croissante sur \mathbb{R}_+^* , il faut indiquer que pour tout $k, x \mapsto x^{k-n}$ est strictement décroissante **et** qu'il existe k tel que $a_k \neq 0$. Même subtilité pour montrer que $f(x) \xrightarrow[x_0, y_0]{0} -\infty$.
- $\mathbf{12}^{\circ}$) Pour passer de l'affirmation $R(A) \geq 0 = R(r)$ à $A \geq r$, la croissance de R ne suffit pas, il faut utiliser la stricte croissance de R.
- 14°) Étudiez de près le corrigé, c'est une question délicate où il est facile de commettre des erreurs ou des omissions.
- 15°) (fin de la question) Sous l'hypothèse $\alpha_{n-1} < \alpha_n$, on montre à l'aide des questions précédentes que 1 est l'unique racine de S de module 1. Il faut tout de même s'assurer que $P(1) \neq 0$, car il est possible a priori que 1 soit racine multiple de S, donc soit racine de P.