DM 52 : Corrigé

Problème 1 : Tétration

- 1°) Les théorèmes généraux nous disent que, pour tout $p \in \mathbb{N}, f_p$ est de classe \mathbf{C}^{∞} sur $\mathbb{R}_{+}^{*}.$ Dès lors, d'après le théorème de Taylor-Young, pour tout $p\in\mathbb{N}, f_{p}$ un développement limité au voisinage de 1 à tout ordre $n \in \mathbb{N}$.
- **2°**) On pose x = 1 + h, de sorte que h tend vers 0 lorsque x tend vers 1.
- où $u = h + \frac{h^2}{2} \frac{h^3}{6} + o(h^3) = h\left(1 + \frac{h}{2} \frac{h^2}{6} + o(h^2)\right)$ tend vers 0 lorsque h tend vers 0. On calcule $u^2 = h^2(1 + h + o(h))$ et $u^3 = h^3(1 + o(1))$
- donc $f_2(1+h) = 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + o(u^3) = 1 + h + h^2 \left(\frac{1}{2} + \frac{1}{2}\right) + h^3 \left(-\frac{1}{6} + \frac{1}{2} + \frac{1}{6}\right) + o(h^3).$

En conclusion, $f_2(1+h) = 1 + h + h^2 + \frac{h^3}{2} + o(h^3)$. \diamond On en déduit que $f_3(1+h) = (1+h)^{f_2(1+h)} = e^{f_2(1+h)\ln(1+h)} = e^v$, où

$$v = h\left(1 + h + h^2 + o\left(h^2\right)\right) \left(1 - \frac{h}{2} + \frac{h^2}{3} + o\left(h^2\right)\right) = h\left(1 + \frac{h}{2} + \frac{5h^2}{6} + o\left(h^2\right)\right).$$

Ainsi, $f_3(1+h) = e^v = 1 + v + \frac{v^2}{2} + \frac{v^3}{6} + o(v^3)$, avec

$$v = h\left(1 + \frac{h}{2} + \frac{5h^2}{6} + o(h^2)\right), v^2 = h^2(1 + h + o(h)) \text{ et } v^2 = h^3(1 + o(1)).$$

En conclusion, $f_3(1+h) = 1 + h + h^2 + \frac{3h^3}{2} + o(h^3)$.

3°) Démontrons par récurrence sur $n \in \mathbb{N}$ l'assertion P(n) suivante :

Il existe $a_{n,0}, \ldots, a_{n,n} \in \mathbb{R}$ tels que, pour tout $p \ge n$,

 $f_p(1+h) = a_{n,0} + a_{n,1}h + \dots + a_{n,n}h^n + o(h^n).$

Initialisation: Pour tout $p \ge 0$, on a $f_p(1) = 1$, donc $f_p(1+h) = 1 + o(h)$. Cela démontre que P(0) est vraie avec $a_{0,0} = 1$.

 $H\acute{e}r\acute{e}dit\acute{e}$: Fixons $n \in \mathbb{N}$ tel que P(n) est vraie et démontrons P(n+1). Soit $p \geqslant n$. On a $f_{p+1}(1+h) = (1+h)^{f_p(1+h)} = e^{f_p(1+h)\ln(1+h)}$.

D'après l'hypothèse de récurrence P(n), il existe des nombres réels $a_{n,0}, \ldots, a_{n,n}$ tels que $f_p(1+h) = a_{n,0} + a_{n,1}h + \dots + a_{n,n}h^n + o(h^n)$.

Le développement de $\ln(1+h)$ à l'ordre n+1 nous donne

$$\ln(1+h) = h - \frac{h^2}{2} + \dots + (-1)^n \frac{h^{n+1}}{n+1} + o(h^{n+1})$$
$$= h \left[1 - \frac{h}{2} + \dots + (-1)^n \frac{h^n}{n+1} + o(h^n) \right].$$

En développant le produit de ces deux derniers développements limités, on obtient l'existence de nombres réels $b_{n+1,1}, b_{n+1,2}, \ldots, b_{n+1,n+1}$ indépendants de p tels que $f_p(1+h)\ln(1+h) = h\left[b_{n+1,1} + b_{n+1,2}h + \cdots + b_{n+1,n+1}h^n + o\left(h^n\right)\right]$.

En composant ce développement limité avec celui de l'exponentielle en 0 à l'ordre n+1, on obtient l'existence de nombres réels $a_{n+1,1}, a_{n+1,2}, \ldots, a_{n+1,n+1}$ indépendants de p tels que $e^{f_p(1+h)\ln(1+h)} = 1 + a_{n+1,1}h + a_{n+1,2}h^2 + \cdots + a_{n+1,n+1}h^{n+1} + o(h^{n+1})$.

En posant $a_{n+1,0} = 1$, on a donc

$$f_{p+1}(1+h) = a_{n+1,0} + a_{n+1,1}h + a_{n+1,2}h^2 + \dots + a_{n+1,n+1}h^{n+1} + o(h^{n+1}).$$

Comme tous les $a_{n+1,j}$, pour $j \in \{0, \ldots, n+1\}$, sont indépendants de p, cela démontre P(n+1). Alors d'après le principe de récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$.

4°) Soit $n \in \mathbb{N}$. Les assertions P(n) et P(n+1) utilisées pour p=n+1 nous disent respectivement que $f_{n+1}(1+h) = a_{n,0} + a_{n,1}h + \cdots + a_{n,n}h^n + o(h^n)$ et $f_{n+1}(1+h) = a_{n+1,0} + a_{n+1,1}h + \cdots + a_{n+1,n}h^n + o(h^n)$.

Alors, d'après l'unicité du développement limité, pour tout $k \leq n$, $a_{n+1,k} = a_{n,k}$. Comme n est quelconque dans \mathbb{N} , on en déduit que, pour tout $k \in \mathbb{N}$, la suite $(a_{n,k})_{n \geq k}$ est constante, égale à une valeur que l'on note a_k . Alors, pour tout $n \in \mathbb{N}$, l'assertion

P(n) devient: $\forall p \ge n, f_p(1+h) = a_0 + a_1h + \dots + a_nh^n + o(h^n).$

5°) Pour n=3, la question précédente nous dit que toutes les fonctions f_p pour $p\geqslant 3$ ont le même développement limité à l'ordre 3. Vu le résultat trouvé à la question 2, on peut donc affirmer que $f_{2023}(1+h)=1+h+h^2+\frac{3h^3}{2}+o\left(h^3\right)$.

Problème 2 : une fonction nulle part dérivable

 $\mathbf{1}^{\circ}$) \diamond Prenons $a=-1,\,b=1$ et, pour tout $x\in[-1,1],\,f(x)=|x|.$

Posons n=2, $a_0=-1$, $a_1=0$ et $a_2=1$. Alors $f|_{[a_0,a_1]}=-\mathrm{Id}_{[-1,0]}$, donc c'est une application dérivable et $f|_{[a_1,a_2]}=\mathrm{Id}_{[0,1]}$, donc c'est aussi une application dérivable. f étant de plus continue, f satisfait les hypothèses de l'énoncé. Pourtant, f n'est pas dérivable en 0, car les dérivées à gauche et à droite en 0 sont différentes.

 \diamond Pour tout $i \in \mathbb{N}_n$, posons $f_i = f|_{[a_{i-1},a_i]}$.

$$|f(b) - f(a)| = |f(a_n) - f(a_0)| = \Big| \sum_{i=1}^{n} (f(a_i) - f(a_{i-1})) \Big|,$$

car la dernière somme est télescopique, donc d'après l'inégalité triangulaire,

$$|f(b) - f(a)| \le \sum_{i=1}^{n} |f(a_i) - f(a_{i-1})| = \sum_{i=1}^{n} |f_i(a_i) - f_i(a_{i-1})|.$$

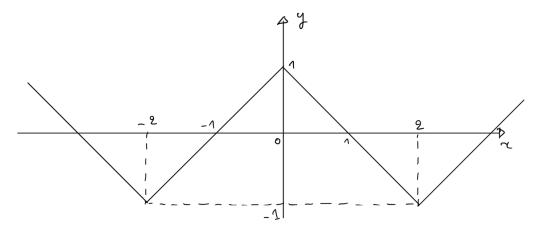
Pour tout $i \in \mathbb{N}_n$, d'après le théorème des accroissements finis appliqué à f_i entre a_{i-1} et a_i , qui est bien dérivable sur $[a_{i-1}, a_i]$, $|f_i(a_i) - f_i(a_{i-1})| \le k|a_i - a_{i-1}| = k(a_i - a_{i-1})$,

donc $|f(b)-f(a)| \le k \sum_{i=1}^{n} (a_i-a_{i-1}) = k(b-a)$, car c'est encore une somme télescopique.

2°) \diamond . Pour $x \in [-2,0]$, g(x) = x + 1. Son graphe sur [-2,0] est le segment de droite joignant les points (-2,-1) et (0,1).

Pour $x \in [0, 2]$, g(x) = 1 - x. Son graphe sur [0, 2] est le segment de droite joignant les points (0, 1) et (2, -1).

Ceci permet de représenter le graphe de g:



 \diamond Le graphe montre que g est continue.

On va tout de même le démontrer rigoureusement.

Lorsque $x \in]-2,2[$,]-2,2[est un voisinage de x sur lequel g(t)=1-|t|, donc g est continue en x. Par 4-périodicité, g est continue en tout point $x \in \mathbb{R} \setminus (2+4\mathbb{Z})$.

Lorsque $x \in [1, 2[, g(x) = 1 - |x|, \text{ donc } g(x) \xrightarrow[x \to 2^{-}]{} -1 = g(-2) = g(2)$ par 4-périodicité. Lorsque $x \in]2, 3[, g(x) = g(x - 4) = 1 - |x - 4|, \text{ donc } g(x) \xrightarrow[x \to 2^{+}]{} -1 = g(2)$. Ceci

démontre que g est continue en 2. Alors, par 4-périodicité, g est continue en tout point de $2 + 4\mathbb{Z}$. En conclusion, on a montré que g est continue sur \mathbb{R} .

 \diamond Soit $a, b \in \mathbb{R}$. Sans perte de généralité, on peut supposer que a < b. Posons $A = 2\mathbb{Z} \cap [a, b[$.

Premier cas : Supposons que $A = \emptyset$. Alors il existe $k \in \mathbb{Z}$ tel que $[a,b] \subset [2k,2k+2]$, donc d'après le graphe de $g, g|_{[a,b]}$ a pour graphe un segment de droite de pente 1 ou -1. Ainsi, pour tout $x \in [a,b], \mid [g|_{[a,b]}]'(x) \mid = 1$. Alors, d'après le théorème des accroissements finis, $|g(b) - g(a)| \leq |b - a|$.

Second cas : Supposons que $A \neq \emptyset$. A est une partie bornée de \mathbb{Z} , donc elle est finie. Notons a_1, \ldots, a_{n-1} ses éléments dans l'ordre croissant, avec n = |A| + 1. Posons également $a_0 = a$ et $a_n = b$. On est alors exactement dans la situation de la question précédente, avec k = 1. On peut donc affirmer que $|g(b) - g(a)| \leq |b - a|$.

3°) Pour tout $x \in [-2, 2[, |g(x)| = |1 - |x|| : c'est la distance entre <math>|x| \in [0, 2]$ et 1, donc $|g(x)| \le 1$. Alors, par 4-périodicité, on en déduit que, pour tout $x \in \mathbb{R}, |g(x)| \le 1$. Soit $x \in \mathbb{R}$. Alors, pour tout $k \in \mathbb{N}, \left|\frac{1}{2^k}g(2^{(2^k)}x)\right| \le \frac{1}{2^k}$, or la série géométrique $\sum \frac{1}{2^k}$

est convergente, donc la série $\sum \frac{1}{2^k} g(2^{(2^k)}x)$ est absolument convergente, ce qui prouve que f est correctement définie sur \mathbb{R} en entier.

Cela prouve également que f est bornée, car pour tout $x \in \mathbb{R}$, $|f(x)| \leq \sum_{k=0}^{\infty} \frac{1}{2^k} = 1$.

4°) Soit $x_0 \in \mathbb{R}$. Soit $\varepsilon \in \mathbb{R}^*_+$. $\sup_{x \in \mathbb{R}} |h(x) - h_n(x)| \underset{n \to +\infty}{\longrightarrow} 0$, donc il existe $N \in \mathbb{N}$ tel que $\sup_{x\in\mathbb{R}}|h(x)-h_N(x)|\leq \frac{\varepsilon}{3}. \text{ Ainsi, pour tout } x\in\mathbb{R}, \ |h(x)-h_N(x)|\leq \frac{\varepsilon}{3}.$

 h_N est continue en x_0 , donc il existe $\alpha \in \mathbb{R}_+^*$ tel que, pour tout $x \in]x_0 - \alpha, x_0 + \alpha[$, $|h_N(x_0) - h_N(x)| \leq \frac{\varepsilon}{3}$.

Soit $x \in \mathbb{R}$ tel que $|x - x_0| < \alpha$. Alors, par inégalité triangulaire,

 $|h(x_0) - h(x)| \le |h(x_0) - h_N(x_0)| + |h_N(x_0) - h_N(x)| + |h_N(x) - h(x)| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$ Ceci démontre que h est continue en x_0 , pour tout $x_0 \in \mathbb{R}$.

5°) Pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, posons $f_n(x) = \sum_{k=1}^n \frac{1}{2^k} g(2^{(2^k)}x)$. D'après les théorèmes usuels, pour tout $n \in \mathbb{N}$, f_n est une application continue de \mathbb{R} dans \mathbb{R} .

Soit $n \in \mathbb{N}$. Pour tout $x \in \mathbb{R}$, $|f(x) - f_n(x)| = \Big| \sum_{k=n+1}^{+\infty} \frac{1}{2^k} g(2^{(2^k)}x) \Big|$, donc par inégalité

triangulaire et sachant que |g| est majorée par 1, $|f(x) - f_n(x)| \leq \sum_{k=1}^{+\infty} \frac{1}{2^k} = \frac{1}{2^n}$.

Ainsi, $\frac{1}{2^n}$ majore $\{|f(x)-f_n(x)| / x \in \mathbb{R}\}$. Ceci prouve que $f-f_n$ est bornée et que ce majorant est plus grand que la borne supérieure, car par définition cette dernière est le plus petit des majorants. Ainsi, $\sup_{x \in \mathbb{R}} |f(x) - f_n(x)| \leq \frac{1}{2^n} \xrightarrow[n \to +\infty]{} 0$. D'après le principe des gendarmes, $\sup_{x \in \mathbb{R}} |f(x) - f_n(x)| \xrightarrow[n \to +\infty]{} 0$. On peut alors appliquer la question précédente et affirmer que f est continue sur \mathbb{R}

6°) \diamond Soit $n \in \mathbb{N}^*$. Il existe $N \in \mathbb{Z}$ tel que $2^{(2^n)}x \in [2N, 2N+2]$.

Si $2^{(2^n)}x \in [2N, 2N+1]$, on peut choisir $\varepsilon_n = 1$.

Sinon, alors $2^{(2^n)}x \in [2N+1,2N+2]$, et on peut choisir $\varepsilon_n = -1$.

 \Rightarrow Supposons d'abord que k > n. Alors $2^{2^k}h_n = \varepsilon_n 2^{2^k-2^n}$, or $2^k - 2^n \ge 2^{n+1} - 2^n = 2^n \ge 2$, donc $2^{2^k}h_n$ est un multiple de 4, mais g est de période 4, donc $\left|g\left(2^{2^k}(x+h_n)\right) - g\left(2^{2^k}x\right)\right| = 0$.

Supposons maintenant que k

Alors $\left| g\left(2^{2^k}(x+h_n)\right) - g\left(2^{2^k}x\right) \right| = \left| g\left(\varepsilon_n + 2^{2^n}x\right) - g\left(2^{2^n}x\right) \right| = 1$, car il existe $N \in \mathbb{N}$ tel que $2^{(2^n)}x$ et $2^{(2^n)}x + \varepsilon_n$ sont tous deux dans l'intervalle [2N, 2N + 2], or sur cet intervalle, le graphe de g est un segment de droite de pente 1 ou -1.

 7°) Soit $n \in \mathbb{N}^*$.

Pour $k \in \{0, \dots, n-1\}$, d'après la question 2,

$$\left| g\left(2^{2^{k}}(x+h_{n})\right) - g\left(2^{2^{k}}x\right) \right| \leq \left| 2^{2^{k}}h_{n} \right| \leq 2^{2^{n-1}}2^{-2^{n}} = 2^{-2^{n-1}} \text{ donc par inégalité triangulaire,} \\
\left| \sum_{k=1}^{n-1} \frac{1}{2^{k}} \left(g\left(2^{2^{k}}(x+h_{n})\right) - g\left(2^{2^{k}}x\right) \right) \right| \leq \left(\sum_{k=1}^{n-1} \frac{1}{2^{k}}\right) 2^{-2^{n-1}} \leq 2^{-2^{n-1}}. \text{ Alors,} \\
\left| \frac{f\left(x+h_{n}\right) - f(x)}{h_{n}} \right| = 2^{2^{n}} \left| \sum_{k=1}^{+\infty} \frac{1}{2^{k}} \left(g\left(2^{2^{k}}(x+h_{n})\right) - g\left(2^{2^{k}}x\right) \right) \right| \\
= 2^{2^{n}} \left| \sum_{k=1}^{n} \frac{1}{2^{k}} \left(g\left(2^{2^{k}}(x+h_{n})\right) - g\left(2^{2^{k}}x\right) \right) \right| \\
= 2^{2^{n}} \left| A - B \right|,$$

où
$$A = \frac{1}{2^n} |g(2^{2^n}(x+h_n)) - g(2^{2^n}x)|$$
 et $B = -\sum_{k=1}^{n-1} \frac{1}{2^k} (g(2^{2^k}(x+h_n)) - g(2^{2^k}x)).$

D'après le corollaire de l'inégalité triangulaire, $|A-B| \ge |A|-|B|$, or d'après la question précédente, $|A|=\frac{1}{2^n}$, donc

$$\left| \frac{f(x+h_n) - f(x)}{h_n} \right| \ge 2^{2^n} \left(\frac{1}{2^n} - \left| \sum_{k=1}^{n-1} \frac{1}{2^k} \left(g\left(2^{2^k} (x+h_n) \right) - g\left(2^{2^k} x \right) \right) \right| \right)$$

$$\ge 2^{2^n} \left(2^{-n} - 2^{-2^{n-1}} \right) = 2^{2^n - n} \left(1 - 2^{n-2^{n-1}} \right) \underset{n \to +\infty}{\longrightarrow} +\infty$$

Ainsi, d'après le principe des gendarmes, $\left| \frac{f\left(x+h_n\right)-f(x)}{h_n} \right| \underset{n \to +\infty}{\longrightarrow} +\infty$. Or h_n est une suite d'éléments de \mathbb{R}^* telle que $h_n \underset{n \to +\infty}{\longrightarrow} 0$, donc d'après la caractérisation séquentielle

de la notion de limite de fonction, on a montré que, pour x fixé, $\frac{f(x+h)-f(x)}{h}$ n'admet pas de limite finie lorsque h tend vers 0 avec $h \in \mathbb{R}^*$. On a donc montré que f n'est pas dérivable en x, mais x est un réel quelconque, donc f est un exemple d'application définie et continue sur \mathbb{R} en entier, mais qui n'est dérivable nulle part.

Problème 3 : Version faible du théorème de Singer

Partie I: Fonctions à schwarzienne négative.

- 1°) Soient $a, b, c \in \mathbb{R}$ avec $a \neq 0$. La fonction $f: x \longmapsto ax^2 + bx + c$ vérifie, pour tout $x \in \mathbb{R}$, $2f'''(x)f'(x) 3f''(x)^2 = 2 \times 0 \times (2ax + b) 3 \times 4a^2 = -12a^2 < 0$, donc f appartient à \mathcal{E} .
- **2°)** Comme f, g sont de classe \mathcal{C}^3 , il en va de même de la fonction $g \circ f$. On calcule successivement : $(g \circ f)' = f' \times (g' \circ f), (g \circ f)'' = f'' \times (g' \circ f) + f'^2 \times (g'' \circ f)$ et $(g \circ f)''' = f''' \times (g' \circ f) + 3f'' \times f' \times (g'' \circ f) + f'^3 \times (g''' \circ f)$. Par conséquent,

$$\begin{array}{lll} (g\circ f)^{(\mathrm{s})} &=& 2(g\circ f)'''(g\circ f)'-3(g\circ f)''^2\\ &=& 2(f'''(g'\circ f)+3f''f'(g''\circ f)+f'^3(g'''\circ f))(f'(g'\circ f))\\ &-3(f''(g'\circ f)+f'^2(g''\circ f))^2\\ &=& 2f'''f'(g'\circ f)^2+6f''f'^2(g''\circ f)(g'\circ f)+2f'^4(g'''\circ f)(g'\circ f)\\ &-3f''^2(g'\circ f)^2-6f''f'^2(g'\circ f)(g''\circ f)-3f'^4(g''\circ f)^2\\ &=& 2f'''f'(g'\circ f)^2+2f'^4(g'''\circ f)(g'\circ f)\\ &-3f''^2(g'\circ f)^2-3f'^4(g'''\circ f)^2\\ &=& (g'\circ f)^2(2f'''f'-3f''^2)+f'^4(2(g'''\circ f)(g'\circ f)-3(g''\circ f)^2)\\ &=& (g'\circ f)^2(2f'''f'-3f''^2)+f'^4[(2g'''g'-3g''^2)\circ f],\\ \text{ce qui montre que } (g\circ f)^{(\mathrm{s})}=(g'\circ f)^2f^{(\mathrm{s})}+f'^4(g^{(\mathrm{s})}\circ f). \end{array}$$

3°) Soient $f, g \in \mathcal{E}$. Soit $x \in \mathbb{R}$ tel que $(g \circ f)'(x) \neq 0$. $(g \circ f)'(x) = f'(x)g'(f(x)), \text{ donc } f'(x) \neq 0 \text{ et } g'(f(x)) \neq 0.$

Ainsi, $f \in \mathcal{E}$ et $f'(x) \neq 0$, donc $f^{(s)}(x) < 0$.

De plus $g \in \mathcal{E}$ et $g'(f(x)) \neq 0$, donc $g^{(s)}(f(x)) < 0$. Alors d'après la question précédente, $(g \circ f)^{(s)}(x) = \underbrace{(g' \circ f)^2(x)}_{>0} \times \underbrace{f^{(s)}(x)}_{<0} + \underbrace{f'^4(x)}_{>0} \times \underbrace{g^{(s)}(f(x))}_{<0} < 0$. Cela démontre que $g \circ f \in \mathcal{E}$.

- 4°) \diamond Comme |f'| possède un minimum local en x_0 , la fonction $\varphi = (f')^2$ possède aussi un minimum local en x_0 . Or φ est dérivable au voisinage de x_0 , donc d'après le cours $\varphi'(x_0)=0.$
- \diamond Raisonnons par l'absurde en supposant que $\varphi''(x_0) < 0$. La formule de Taylor-Young appliquée à la fonction φ (de classe \mathcal{C}^2 sur \mathbb{R}) en x_0 à l'ordre 2 nous dit que

$$\varphi(x_0 + h) = \varphi(x_0) + \frac{\varphi''(x_0)}{2}h^2 + o(h^2),$$

donc pour h au voisinage de 0, $\varphi(x_0+h)-\varphi(x_0)\sim \frac{\varphi''(x_0)}{2}h^2<0$. Ceci démontre qu'il existe $\varepsilon > 0$ tel que, pour $h \in]-\varepsilon, \varepsilon[\setminus\{0\}, \varphi(x_0+h) < \overline{\varphi}(x_0), c'est-à-dire que <math>\varphi$ admet en x_0 un maximum local strict. C'est absurde! Donc $\varphi''(x_0) \geq 0$.

 \diamond Raisonnons à nouveau par l'absurde en supposant que $f'(x_0) \neq 0$.

Alors, comme $f \in \mathcal{E}$, $(*): 2f'''(x_0)f'(x_0) - 3f''(x_0)^2 = f^{(s)}(x_0) < 0$.

Par ailleurs, comme $\varphi'(x_0) = 2f''(x_0)f'(x_0)$ et $\varphi''(x_0) = 2f'''(x_0)f'(x_0) - 2f''(x_0)^2$, les conditions $\varphi'(x_0) = 0$ et $\varphi''(x_0) > 0$ établies précédemment impliquent que $f''(x_0) = 0$ et $f'''(x_0)f'(x_0) \ge 0$, ce qui implique que $(**): 2f'''(x_0)f'(x_0) - 3f''(x_0)^2 \ge 0$.

Les inégalités (*) et (**) sont contradictoires, donc $f'(x_0) = 0$.

Partie II: Points fixes attractifs

5°) La fonction $f: x \longmapsto x^3$ possède exactement trois points fixes, à savoir 0, 1 et -1. Comme f'(0) = 0 et f'(-1) = f'(1) = 3, on voit que le seul point fixe attractif de f est 0.

Pour tout $x \in \mathbb{R}$, on a $f^{\circ n}(x) = x^{3^n}$ par récurrence immédiate. Si $x \in]-1, 1[$, alors $x^n \underset{n \to +\infty}{\longrightarrow} 0$, or (x^{3^n}) est une suite extraite de (x^n) , donc $f^{\circ n}(x) \underset{n \to +\infty}{\longrightarrow} 0$.

Si $|x| \ge 1$, alors pour tout $n \in \mathbb{N}$, $|f^{\circ n}(x)| \ge 1$, donc $f^{\circ n}(x)$ ne tend pas vers 0. Par conséquent $B_f(0) =]-1, 1[$.

6°) Comme ℓ est un point fixe de f, une récurrence immédiate montre que la suite $(f^{\circ n}(\ell))_{n\geq 0}$ est la suite constante égale à ℓ . Elle converge bien vers ℓ . Donc $\ell\in B_f(\ell)$. Notons $\mathcal I$ l'ensemble des intervalles de $\mathbb R$ contenant ℓ et inclus dans $B_f(\ell)$ et posons $I_f(\ell)=\bigcup_{I\in\mathcal I}I$. Ce qui précède montre que $\{\ell\}\in\mathcal I$, donc $\ell\in I_f(\ell)$. $I_f(\ell)$ est une réunion

d'intervalles possédant ℓ comme point commun, donc d'après le cours, $I_f(\ell)$ est aussi un intervalle. Par construction, c'est bien le plus grand intervalle contenant ℓ et inclus dans $B_f(\ell)$.

7°) \diamond Soit $y \in f(B_f(\ell))$. Il existe $x \in B_f(\ell)$ tel que y = f(x). $x \in B_f(\ell)$, donc $f^{\circ n}(x) \underset{n \to +\infty}{\longrightarrow} \ell$, donc $f^{\circ n}(y) = f^{\circ (n+1)}(x) \underset{n \to +\infty}{\longrightarrow} \ell$. Ainsi, $y \in B_f(\ell)$. Donc $f(B_f(\ell)) \subset B_f(\ell)$.

Donc $f(B_f(\ell)) \subset B_f(\ell)$. \diamond Soit $x \in f^{-1}(B_f(\ell))$. On a $f(x) \in B_f(\ell)$. Alors $f^{\circ n+1}(x) = f^{\circ n}(f(x)) \underset{n \to +\infty}{\longrightarrow} \ell$, donc $f^{\circ n}(x) \underset{n \to +\infty}{\longrightarrow} \ell$. Cela démontre que $x \in B_f(\ell)$. Donc $f^{-1}(B_f(\ell)) \subset B_f(\ell)$.

 \diamond La fonction f est continue et $I_f(\ell)$ est un intervalle donc, d'après le théorème des valeurs intermédiaires, $f(I_f(\ell))$ est un intervalle.

Comme $\ell \in I_f(\ell)$, on a $\ell = f(\ell) \in f(I_f(\ell))$.

Enfin, comme $I_f(\ell) \subset B_f(\ell)$, on a $f(I_f(\ell)) \subset f(B_f(\ell)) \subset B_f(\ell)$ d'après la question précédente.

Ainsi $f(I_f(\ell))$ est un intervalle de \mathbb{R} contenant ℓ et inclus dans $B_f(\ell)$. Et comme $I_f(\ell)$ est, par définition, le plus grand intervalle de \mathbb{R} contenant ℓ et inclus dans $B_f(\ell)$, on en déduit que $f(I_f(\ell)) \subset I_f(\ell)$.

8°) \diamond Par hypothèse, $|f'(\ell)| < 1$, donc il existe k tel que $|f'(\ell)| < k < 1$.

D'après les théorèmes usuels, |f'| est continue en ℓ , donc d'après le lemme du tunnel, il existe $\alpha \in \mathbb{R}_+^*$ tel que $\forall x \in]\ell - \alpha; \ell + \alpha[\,,\,|f'(x)| \leq k.$

D'après l'inégalité des accroissements finis, on a

 $\forall x, y \in]\ell - \alpha; \ell + \alpha[, |f(x) - f(y)| \le k|x - y|,$ ce qui signifie que f est k-lipschitzienne sur $[\ell - \alpha; \ell + \alpha[.$

 $\bullet \quad \text{En particulier, } \forall x \in]\ell - \alpha; \ell + \alpha[\,,\, |f(x) - \ell| = |f(x) - f(\ell)| \leq k|x - \ell|.$ Notamment, pour tout $x \in]\ell - \alpha; \ell + \alpha[\,,\, |f(x) - \ell| \leq |x - \ell| < \alpha, \, \text{donc } f(x) \in]\ell - \alpha; \ell + \alpha[\,.$ Ainsi l'intervalle $[\ell - \alpha; \ell + \alpha[\,\,\text{est stable par } f.\,]$

 \diamond Soit $x \in]\ell - \alpha; \ell + \alpha[$. Ce qui précède montre que pour tout $n \in \mathbb{N},$

 $f^{\circ n}(x) \in]\ell - \alpha; \ell + \alpha[$ et que $|f^{\circ (n+1)(x)} - \ell| \leq k|f^{\circ n}(x) - \ell|$, donc par récurrence, pour tout $n \in \mathbb{N}$, $|f^{\circ n}(x) - \ell| \leq k^n|x - \ell| \underset{n \to +\infty}{\longrightarrow} 0$, car $k \in [0, 1[$. Alors, d'après le principe des gendarmes, $f^{\circ n}(x) \underset{n \to +\infty}{\longrightarrow} \ell$, ce qui prouve que $x \in B_f(\ell)$.

Ceci démontre que $]\ell - \alpha; \ell + \alpha[\subset B_f(\ell).$

 9°) \diamond Soit $x_0 \in B_f(\ell)$.

Alors $f^{\circ n}(x_0) \xrightarrow[n \to +\infty]{} \ell$, donc il existe $m \in \mathbb{N}$ tel que $f^{\circ m}(x_0) \in]\ell - \alpha; \ell + \alpha[$.

D'après les théorèmes usuels, $f^{\circ m}$ est continue en x_0 , donc d'après le lemme du tunnel,

il existe $\eta > 0$ tel que $\forall x \in]x_0 - \eta; x_0 + \eta[, f^{\circ m}(x) \in]\ell - \alpha; \ell + \alpha[.$ Soit $x \in]x_0 - \eta; x_0 + \eta[.$ Alors $f^{\circ m}(x) \in B_f(\ell)$, donc $f^{\circ n+m}(x) = f^{\circ n}(f^{\circ m}(x)) \underset{n \to +\infty}{\longrightarrow} 0$, ce qui prouve que $x \in B_f(\ell)$. Ainsi, $|x_0 - \eta; x_0 + \eta| \subset B_f(\ell)$.

Donc $B_f(\ell)$ est voisinage de chacun de ses points : c'est un ouvert.

 \diamond Soit $x_0 \in I_f(\ell)$. A fortiori, x_0 appartient à $B_f(\ell)$, qui est ouvert, donc il existe $\eta > 0$ tel que $|x_0 - \eta; x_0 + \eta| \subset B_f(\ell)$.

Dès lors, en tant qu'union d'intervalles possédant tous le point x_0 , $I_f(\ell) \cup]x_0 - \eta; x_0 + \eta[$ est un intervalle de \mathbb{R} contenant ℓ et inclus dans $B_{\ell}(\ell)$.

Et comme $I_f(\ell)$ est le plus grand intervalle de \mathbb{R} contenant ℓ et inclus dans $B_f(\ell)$, il s'ensuit que $I_f(\ell) \cup [x_0 - \eta; x_0 + \eta] = I_f(\ell)$. On a donc $[x_0 - \eta; x_0 + \eta] \subset I_f(\ell)$. Cela démontre que $I_f(\ell)$ est un ouvert.

Partie III : Version faible du théorème de Singer

10°) La fonction $f^{\circ 2}$ est de classe \mathcal{C}^3 sur \mathbb{R} et $(f^{\circ 2})' = f' \times (f' \circ f)$.

La fonction f' est continue et ne s'annule pas sur a; b[, donc f' garde un signe constant (strict) sur a; b d'après le théorème des valeurs intermédiaires.

Comme d'après la question 7, $f([a;b]) \subset [a;b[$, la fonction $f' \circ f$ a le même signe (strict) que la fonction f' sur a; b[.

Par suite, la fonction $(f^{\circ 2})' = f' \times (f' \circ f)$ est le produit de deux fonctions de même signe (strict) sur a; b[, donc $(f^{\circ 2})' > 0$ sur a; b[.

De plus, on a $(f^{\circ 2})'(\ell) = f'(\ell)f'(f(\ell)) = f'(\ell)f'(\ell) = f'(\ell)^2 < 1$, car ℓ est un point fixe attractif, donc $(f^{\circ 2})'(\ell) < 1$.

11°) \diamond D'après la question 7, $f(I_f(\ell)) \subset I_f(\ell)$, donc $f([a;b]) \subset [a;b[$, or f est continue en a, donc $f(a) = \lim_{x \to a^+} f(x)$ est dans l'adhérence de a; b[. Ainsi, $f(a) \in [a; b]$.

Par l'absurde, on suppose que $f(a) \in [a; b[$. Alors $f(a) \in I_f(\ell)$ et donc $f(a) \in B_f(\ell)$. Alors, d'après la question 7, $a \in B_f(\ell)$. Dans ce cas, [a;b] est un intervalle de \mathbb{R} contenant ℓ et inclus dans $B_f(\ell)$, ce qui contredit la maximalité de $I_f(\ell) = a; b[$. C'est absurde, donc $f(a) \notin [a; b[$.

Il s'ensuit que $f(a) \in \{a; b\}$.

On démontre de même que $f(b) \in \{a; b\}$.

- \diamond On a vu que, pour tout $x \in]a, b[, (f^{\circ 2})'(x) > 0, \text{ or } (f^{\circ 2})' \text{ est continue, donc en passant}]$ à la limite, on montre que $(f^{\circ 2})'(a) \geq 0$ et $(f^{\circ 2})'(a) \geq 0$. Ainsi $f^{\circ 2}$ est croissante sur [a,b]. En particulier, on en déduit que $f^{\circ 2}(a) \leq f^{\circ 2}(b)$.
- Or f(a) et f(b) appartiennent à $\{a;b\}$, donc $f^{\circ 2}(a)$ et $f^{\circ 2}(b)$ appartiennent aussi à $\{a;b\}$. Alors on a nécessairement $f^{\circ 2}(a) = a$ et $f^{\circ 2}(b) = b$.
- 12°) En appliquant le théorème des accroissements finis à la fonction $f^{\circ 2}$ (qui est bien dérivable) entre les points a et ℓ , on obtient l'existence de $\alpha \in [a; \ell]$ tel que $\frac{f^{\circ 2}(\ell) - f^{\circ 2}(a)}{a} = (f^{\circ 2})'(\alpha)$. Comme a et ℓ sont des points fixes de f, le quotient dans le membre de gauche vaut 1, ce qui donne $(f^{\circ 2})'(\alpha) = 1$.

De même, en appliquant le théorème des accroissements finis à la fonction $f^{\circ 2}$ entre les points ℓ et b, on obtient l'existence de $\beta \in]\ell; b[$ tel que $(f^{\circ 2})'(\beta) = 1$.

13°) La fonction $(f^{\circ 2})'$ est continue sur le compact $[\alpha; \beta]$ donc, par le théorème des bornes atteintes, $(f^{\circ 2})'$ atteint son minimum sur $[\alpha; \beta]$.

On sait que $(f^{\circ 2})'(\alpha) = (f^{\circ 2})'(\beta) = 1$ et $(f^{\circ 2})'(\ell) < 1$ avec $\ell \in]\alpha; \beta[$. Par conséquent, le minimum de la fonction $(f^{\circ 2})'$ sur $[\alpha; \beta]$ est atteint en un point $x_m \in]\alpha; \beta[$ et l'on a, d'après la question $10, 0 < (f^{\circ 2})'(x_m) < 1$.

Comme f appartient à \mathcal{E} , d'après la question 3, $f^{\circ 2}$ appartient également à \mathcal{E} .

Or x_m est un minimum local de $(f^{\circ 2})'$ donc de $|(f^{\circ 2})''|$ (car $(f^{\circ 2})'$ est positive au voisinage de x_m), donc on peut appliquer la question 4 à la fonction $f^{\circ 2}$. On en déduit que $(f^{\circ 2})'(x_m) = 0$, ce qui est contradictoire.

Conclusion, si $I_f(\ell)$ est un intervalle borné, alors f' s'annule au moins une fois sur $I_f(\ell)$.

14°) \diamond Si ℓ_1 et ℓ_2 désignent deux points fixes attractifs distincts de f, alors $B_f(\ell_1)$ et $B_f(\ell_2)$ sont disjoints (sinon il existerait x tel que $f^{\circ n}(x)$ tende à la fois vers ℓ_1 et vers ℓ_2 lorsque n tend vers $+\infty$, ce qui n'est pas raisonnable!).

On en déduit notamment que l'application $\ell \mapsto B_f(\ell)$ est une bijection de l'ensemble des points attractifs de f vers l'ensemble des bassins d'attraction. Ainsi, pour dénombrer les points fixes attractifs de f, il suffit de compter les bassins d'attraction de f.

 \diamond Si ℓ est un point fixe attractif tel que $I_f(\ell)$ est non majoré, alors $B_f(\ell)$ contient $[\ell; +\infty[$ (puisque $B_f(\ell)$ inclus $I_f(\ell)$ qui est un intervalle non majoré contenant ℓ). Dans ce cas, aucun autre bassin d'attraction ne peut être non majoré (sinon ce bassin ne serait pas disjoint de $B_f(\ell)$ au voisinage de $+\infty$). On retient donc qu'il y a au plus un bassin d'attraction non majoré.

De même, on démontre qu'il y a au plus un bassin d'attraction non minoré.

 \diamond Reste le cas d'un point fixe attractif ℓ dont le bassin d'attraction $B_f(\ell)$ est borné. Dans ce cas, $I_f(\ell)$ est borné et le résultat de la question précédente s'applique : sur $I_f(\ell)$, la fonction f' s'annule au moins une fois. Comme l'hypothèse nous dit que f' s'annule en n points distincts, on en déduit qu'il y a au plus n bassins d'attraction bornés.

Cela fait donc au plus n+2 bassins d'attraction, ce qui implique que f a au plus n+2 points fixes attractifs.