Introduction

Dans tout ce problème, n désigne un entier strictement positif, et les espaces vectoriels sont toujours des \mathbb{R} -espaces vectoriels.

Dans ce problème, on appelle corps toute \mathbb{R} -algèbre, éventuellement non commutative, dans laquelle tout élément non nul admet un inverse pour le produit.

Partie I : Étude d'un exemple

1°) Soit A une matrice quelconque de $\mathcal{M}_2(\mathbb{R})$. Vérifier que:

$$A^2 - \operatorname{tr}(A)A + \det(A)I_2 = 0.$$

 2°) Soit A une matrice non scalaire; on note A l'ensemble

$$\mathbb{A} = \{ M \in \mathcal{M}_2(\mathbb{R}) / \exists (a,b) \in \mathbb{R}^2, \ M = aI_2 + bA \}$$

Vérifier que \mathbb{A} est une algèbre de dimension deux, sous-algèbre de $\mathcal{M}_2(\mathbb{R})$.

- 3°) Montrer que A contient une matrice B telle que $B^2 = -I_2$ si et seulement si $(\operatorname{tr} A)^2 < 4 \operatorname{det} A$.
- 4°) Vérifier qu'alors I_2 et B forment une base de \mathbb{A} et en déduire un isomorphisme d'algèbres entre \mathbb{A} et le corps \mathbb{C} des nombres complexes.
- 5°) On suppose que A est non scalaire et vérifie: $(\operatorname{tr} A)^2 = 4 \operatorname{det} A$. Déterminer toutes les matrices de \mathbb{A} telles que $M^2 = 0$, et en déduire que \mathbb{A} n'est pas un corps.
- 6°) Soit B une matrice non scalaire de $\mathcal{M}_2(\mathbb{R})$. On lui associe l'algèbre \mathbb{B} comme dans I.2. Démontrer que si A et B sont semblables, \mathbb{A} et \mathbb{B} sont des algèbres isomorphes.
- 7°) On suppose que \mathbb{A} est telle que: $(\operatorname{tr} A)^2 > 4 \operatorname{det} A$. Vérifier que A est diagonalisable de valeurs propres distinctes. En déduire que \mathbb{A} est isomorphe à l'algèbre des matrices diagonales. Est-ce que \mathbb{A} est un corps ?

Partie II : Quelques résultats généraux

Soit \mathbb{D} une algèbre de dimension finie n.

1°) Soit a un élément de \mathbb{D} , démontrer que l'application φ_a , définie par:

$$\varphi_a: \left\{ \begin{array}{ccc} \mathbb{D} & \to & \mathbb{D} \\ x & \mapsto & ax \end{array} \right.$$

est un endomorphisme de l'espace vectoriel \mathbb{D} .

2°) On note \mathcal{B} une base de \mathbb{D} . Mat $_{\mathcal{B}}(\varphi_a)$ désigne la matrice de l'endomorphisme φ_a dans la base \mathcal{B} . Démontrer que l'application:

$$\Psi: \left\{ \begin{array}{ccc} \mathbb{D} & \to & \mathcal{M}_n(\mathbb{R}) \\ a & \mapsto & \operatorname{Mat}_{\mathcal{B}}(\varphi_a) \end{array} \right.$$

est un morphisme injectif d'algèbres. Vérifier que $\Psi(\mathbb{D})$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$ et en déduire que \mathbb{D} est isomorphe à une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$.

- **3°)** On suppose que $\mathbb{D} = \mathbb{C}$, corps des nombres complexes. On munit \mathbb{C} , considéré comme \mathbb{R} -espace vectoriel, de la base $\mathcal{B} = (1, i)$. Pour tout nombre complexe z = a + ib, (a et b réels), écrire la matrice $\mathrm{Mat}_{\mathcal{B}}(\varphi_z)$.
- **4°)** Soit maintenant \mathbb{A} une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$. On s'intéresse à quelques cas où on peut affirmer que \mathbb{A} est, ou n'est pas, un corps.
- a) On suppose que \mathbb{A} contient une matrice non scalaire A qui a une valeur propre réelle λ . Montrer que \mathbb{A} ne peut pas être un corps. On utilisera une matrice bien choisie, combinaison linéaire de I_n et de A.
- **b**) En déduire que si A contient une matrice diagonalisable ou trigonalisable non scalaire, elle ne peut pas être un corps.

c) On suppose que A est intègre, c'est-à-dire que:

$$\forall A \in \mathbb{A}, \forall B \in \mathbb{A}, AB = 0 \implies A = 0 \text{ ou } B = 0.$$

Montrer que, si A est une matrice non nulle de \mathbb{A} , l'application $\Phi_A : X \mapsto AX$ est un isomorphisme de l'espace vectoriel \mathbb{A} . En déduire que \mathbb{A} est un corps.

Partie III : L'algèbre des quaternions

On suppose qu'il existe deux matrices A et B de $\mathcal{M}_n(\mathbb{R})$ telles que:

(*)
$$A^2 = -I_n, \quad B^2 = -I_n, \quad AB + BA = 0$$

- 1°) Démontrer que n ne peut pas être impair.
- **2°)** Démontrer que le sous-espace vectoriel \mathbb{H} engendré par les matrices I_n , A, B et AB est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$
- 3°) Lorsque t, x, y et z sont des réels, calculer le produit:

$$(tI_n + xA + yB + zAB)(tI_n - xA - yB - zAB)$$

- 4°) En déduire:
- (a) que les quatre matrices I_n , A, B et AB sont indépendantes et forment une base de \mathbb{H} ;
- (b) que H est un corps.
- 5°) On suppose dans toute la suite du problème que n=4 et, en notant J la matrice $J=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et 0 la matrice nulle de $\mathcal{M}_2(\mathbb{R})$, on définit les matrices A et B de $\mathcal{M}_4(\mathbb{R})$ par:

$$A = \begin{pmatrix} J & 0 \\ 0 & -J \end{pmatrix} \quad B = \begin{pmatrix} 0 & -I_2 \\ I_2 & 0 \end{pmatrix}$$

On pose également C = AB.

- a) Vérifier que les matrices A et B satisfont la condition (*). On appellera donc \mathbb{H} le sous- espace vectoriel de $\mathcal{M}_4(\mathbb{R})$ engendré par I_4 , A, B et C = AB. Ses éléments sont appelés **quaternions**. La base (I_4, A, B, C) de \mathbb{H} sera notée \mathcal{B} .
- **b**) Soit M une matrice non nulle de \mathbb{H} , vérifier que ${}^tM \in \mathbb{H}$; quel lien y a t-il entre M^{-1} et tM ?

Partie IV : Les automorphismes de l'algèbre des quaternions

- 1°) On appelle quaternion pur un élément M de \mathbb{H} tel que $M = -^t M$. Vérifier que l'ensemble des quaternions purs est un \mathbb{R} -espace vectoriel de dimension trois et de base $\mathcal{C} = (A, B, C)$. On le note \mathbb{L} . Est-ce une sous-algèbre de \mathbb{H} ?
- **2°)** On munit \mathbb{L} de la structure d'espace vectoriel euclidien telle que la base \mathcal{C} soit orthonormée. Le produit scalaire de deux éléments M et N de \mathbb{L} est noté (M|N). Ainsi, si M = xA + yB + zC et N = x'A + y'B + z'C alors (M|N) = xx' + yy' + zz'.

On appelle norme de M la quantité $||M|| = \sqrt{(M|M)}$.

Vérifier que:

$$\frac{1}{2}(MN + NM) = -(M|N)I_4.$$

- **3°)** Montrer qu'un quaternion est pur si, et seulement si, son carré est une matrice scalaire de la forme $\lambda I4$ où λ est un réel négatif.
- **4°)** Soit φ un isomorphisme d'algèbre de $\mathbb H$ dans lui-même. Démontrer qu'il transforme tout quaternion pur en un quaternion pur de même norme, et que la restriction de φ à $\mathbb L$ est un endomorphisme orthogonal : si $u \in L(\mathbb L)$, u est un endomorphisme orthogonal si et seulement si pour tout $M \in \mathbb L$, ||u(M)|| = ||M||.
- 5°) Soient M et N deux quaternions purs. On veut démontrer que si M et N ont même norme, alors il existe $P \in \mathbb{H}$, non nulle, telle que: $M = P^{-1}NP$.
- a) Commencer par examiner le cas où M et N sont colinéaires.

 \mathbf{b}) On suppose maintenant que M et N ne sont pas colinéaires. Vérifier que si M et N ont même norme :

$$M(MN) - (MN)N = ||M||^2(M-N)$$

et en déduire une matrice P non nulle telle que MP=PN.

- **6°)** Montrer qu'alors, si on écrit $P = \alpha I_4 + Q$, avec α réel et $Q \in \mathbb{L}$, Q est orthogonal à M et à N.
- 7°) En déduire que tout isomorphisme d'algèbre φ de $\mathbb H$ dans lui-même est défini par:

$$\varphi(M) = P^{-1}MP$$

où P est un élément non nul de \mathbb{H} . On pourra observer qu'un tel isomorphisme est déterminé par l'image de A et de B, et commencer par chercher les isomorphismes qui laissent A invariante.

Fin de l'énoncé.