Résumé de cours : Semaine 6, du 6 au 10 octobre.

$1 \quad \mathbb{Z}$

1.1 Construction de \mathbb{Z}

Définition. $\mathbb{Z} = \mathbb{N}^2/R$, où R est la relation d'équivalence suivante sur \mathbb{N}^2 : $\forall a, b, c, d \in \mathbb{N}$, $(a, b)R(c, d) \iff a + d = b + c$. Si $\overline{(a, b)}, \overline{(c, d)} \in \mathbb{Z}$, on pose $\overline{(a, b)} + \overline{(c, d)} \stackrel{\Delta}{=} \overline{(a + c, b + d)}$ et $\overline{(a, b)} \times \overline{(c, d)} \stackrel{\Delta}{=} \overline{(ac + bd, ad + bc)}$.

1.2 L'anneau \mathbb{Z}

Propriété. L'addition sur $\mathbb Z$ vérifie les propriétés suivantes :

- $-0 \stackrel{\Delta}{=} \overline{(0,0)}$ est neutre : $\forall m \in \mathbb{Z}, m+0=0+m=m$.
- Associativité : $\forall n, m, k \in \mathbb{Z}, (n+m) + k = n + (m+k).$
- Commutativité : $\forall n, m \in \mathbb{Z}, n+m=m+n$.
- Tout élément possède un symétrique : $\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z}, n+m=0.$

On résume ces propriétés en disant que $(\mathbb{Z}, +)$ est un groupe commutatif.

Propriété. La multiplication sur $\mathbb Z$ vérifie les propriétés suivantes :

- $-1 \stackrel{\Delta}{=} \overline{(1,0)}$ est neutre : $\forall m \in \mathbb{Z}, \ m \times 1 = 1 \times m = m$.
- Distributivité de la multiplication par rapport à l'addition : $\forall n, m, p \in \mathbb{Z}, \ n(m+p) = nm + np.$
- Associativité : $\forall n, m, k \in \mathbb{Z}, (n \times m) \times k = n \times (m \times k).$
- Commutativité : $\forall n, m \in \mathbb{Z}, n \times m = m \times n$.

On résume ces propriétés et le fait que $(\mathbb{Z}, +)$ est un groupe commutatif en disant que $(\mathbb{Z}, +, \times)$ est un anneau commutatif.

1.3 L'ordre de \mathbb{Z}

Compatibilité de la relation d'ordre avec l'addition :

$$\forall x, y, x', y' \in \mathbb{Z}, \ [x \le y] \land [x' \le y'] \Longrightarrow x + x' \le y + y'.$$

Identification de \mathbb{N} avec une partie de \mathbb{Z} : on identifie $n \in \mathbb{N}$ avec $\overline{(n,0)}$.

Règle des signes :

- $-\forall n \in \mathbb{Z}, n \geq 0 \iff n \in \mathbb{N}.$
- $--\forall n, m \in \mathbb{Z}, ([n \ge 0] \land [m \ge 0]) \Longrightarrow nm \ge 0.$
- $-\forall n \in \mathbb{Z}, \ n \ge 0 \Longleftrightarrow -n \le 0.$ $-\forall x, y, a \in \mathbb{Z}, \ \begin{cases} \sin a \ge 0, \ x \le y \Longrightarrow ax \le ay, \\ \sin a \le 0, \ x \le y \Longrightarrow ax \ge ay. \end{cases}$

Propriété. Toute partie non vide majorée de Z possède un maximum.

Toute partie non vide minorée de \mathbb{Z} possède un minimum.

Définition. Soit $n \in \mathbb{Z}$.

Le signe de n au sens large est

- 1 ou bien "positif" lorsque $n \geq 0$,
- -1 ou bien "négatif" lorsque $n \leq 0$.

Le signe de n au sens strict est

- 1 ou bien "strictement positif" lorsque n > 0,
- 0 ou bien "nul" lorsque n=0,
- -- 1 ou bien "strictement négatif" lorsque n < 0.

Définition. Pour tout $n \in \mathbb{Z}$, on note $|n| = \max\{-n, n\}$.

Propriété. Pour tout $n \in \mathbb{Z}$, $n \le |n|$, avec égalité si et seulement si $n \ge 0$. De plus $|n|^2 = n^2$.

Propriété. $\forall n, m \in \mathbb{Z}, |nm| = |n||m|.$

Propriété. \mathbb{Z} est un anneau intègre, c'est-à-dire que, pour tout $n, m \in \mathbb{Z}$, $nm = 0 \Longrightarrow [(n = 0) \lor (m = 0)].$

Propriété. Soit $n, m \in \mathbb{Z}^2$. $nm \ge 0$ si et seulement si n et m sont de même signe au sens large.

Propriété. Soit $a, b, n \in \mathbb{Z}$ tels que an < bn. Si n > 0 alors a < b et si n < 0, alors a > b.

Inégalité triangulaire : $\forall n, m \in \mathbb{Z}, |n+m| \leq |n| + |m|$, avec égalité si et seulement si n et m sont de même signe.

Il faut savoir le démontrer.

1.4Les sous-groupes de \mathbb{Z}

Division euclidienne dans \mathbb{Z} : Pour tout $a, b \in \mathbb{Z}$ avec $b \neq 0$, il existe un unique couple $(q, r) \in \mathbb{Z}^2$ tel que a = bq + r et $0 \le r < |b|$. q et r sont appelés les quotient et reste.

Définition. Une partie G de \mathbb{Z} est un sous-groupe de \mathbb{Z} si et seulement si

- $-- \ G \neq \emptyset,$
- $\forall (x,y) \in G^2, \ x+y \in G,$
- $\forall x \in G, -x \in G.$

Propriété. Soit G un sous-groupe de \mathbb{Z} .

Pour tout $n \in \mathbb{Z}$ et $g \in G$, $ng \in G$.

Pour tout $n \in G$, $n\mathbb{Z} \subset G$.

Il faut savoir le démontrer.

Corollaire. Soit G un sous-groupe de \mathbb{Z} . Alors $|1 \in G \iff G = \mathbb{Z}|$

Théorème. Les sous-groupes de $(\mathbb{Z}, +)$ sont exactement les $n\mathbb{Z}$, où $n \in \mathbb{N}$.

Il faut savoir le démontrer.

Propriété. Une intersection de sous-groupes de \mathbb{Z} est un sous-groupe de \mathbb{Z} .

Il faut savoir le démontrer.

Définition. Soit B une partie de \mathbb{Z} . Le groupe engendré par B est l'intersection des sous-groupes de \mathbb{Z} contenant B. C'est le plus petit sous-groupe contenant B. On le note Gr(B).

Propriété. Soient B et C deux parties de \mathbb{Z} telles que $C \subset B$. Alors $Gr(C) \subset Gr(B)$.

Propriété.
$$Gr(B) = \Big\{ \sum_{i=1}^n a_i b_i / n \in \mathbb{N}, (a_1, \dots, a_n) \in \mathbb{Z}^n, (b_1, \dots, b_n) \in B^n \Big\}.$$

Il faut savoir le démontrer.

1.5 Divisibilité

Définition. Soit $n, m \in \mathbb{Z}$. n|m si et seulement si il existe $k \in \mathbb{Z}$ tel que m = kn.

Propriété. Soit $a, b \in \mathbb{Z}$ avec $b \neq 0$. Alors b divise a si et seulement si le reste de la division euclidienne de a par b vaut 0.

Remarque. Tout entier relatif divise 0 mais 0 ne divise que lui-même.

Remarque. Si $n, m \in \mathbb{Z}$, n divise m si et seulement si |n| divise |m| dans \mathbb{N} .

Propriété. Soit $a, b, c \in \mathbb{Z}$.

- si b|a, alors pour tout $\alpha \in \mathbb{Z}$, $b|\alpha a$.
- Si $b \mid a$ et $b \mid c$, alors $b \mid (a+c)$.
- Si $b \mid a$ et $d \mid c$, alors $bd \mid ac$.
- si $b \mid a$, pour tout $p \in \mathbb{N}$, $b^p \mid a^p$.

Propriété. Soit $p \in \mathbb{N}$ et $b, a_1, \ldots, a_p, c_1, \ldots, c_p \in \mathbb{Z}$.

Si pour tout
$$i \in \{1, \dots, p\}$$
, $b \mid a_i$, alors $b \mid \sum_{i=1}^p c_i a_i$.

Propriété. Pour tout $(a,b) \in \mathbb{Z}^2$, $a|b \iff b\mathbb{Z} \subseteq a\mathbb{Z}$.

Propriété. La relation de divisibilité est réflexive et transitive.

Remarque. La relation de divisibilité n'est pas un ordre sur \mathbb{Z} car -1|1 et 1|-1.

Définition. Soit $a, b \in \mathbb{Z}$. On dit que a et b sont premiers entre eux (ou étrangers) si et seulement si les seuls diviseurs communs de a et b sont 1 et -1.

Définition. Soit $n \in \mathbb{N}$ avec $n \geq 2$ et $a_1, \ldots, a_n \in \mathbb{Z}$.

- a_1, \ldots, a_n sont deux à deux premiers entre eux si et seulement si, pour tout $i, j \in \{1, \ldots, n\}$ avec $i \neq j$, a_i et a_j sont premiers entre eux.
- a_1, \ldots, a_n sont globalement premiers entre eux si et seulement si les seuls diviseurs communs de a_1, \ldots, a_n sont 1 et -1.

Propriété. Si $p \in \mathbb{P}$ et $a \in \mathbb{Z}$, alors ou bien p|a, ou bien p et a sont premiers entre eux.

Propriété. Soit $p \in \mathbb{N} \setminus \{0,1\}$. Les propriétés suivantes sont équivalentes :

- 1. p est premier.
- 2. p est premier avec tout entier qu'il ne divise pas.
- 3. p est premier avec tout nombre premier contenu dans $[2, \sqrt{p}]$.

Il faut savoir le démontrer.

le crible d'Ératosthène : pour dresser la liste ordonnée des nombres premiers inférieurs à n, initialement, on pose $L = [\![2,n]\!]$ et on positionne un curseur sur 2. On supprime de L les multiples de 2, sauf 2, puis on déplace le curseur sur l'entier suivant de L: il s'agit de 3, car il n'a pas été supprimé. On supprime de L tous les multiples de 3, sauf 3, etc. Ainsi, à chaque itération, on déplace le curseur

sur le premier entier suivant qui est encore dans L et l'on supprime de L tous les multiples du curseur, sauf le curseur. On arrête l'algorithme dès que le curseur est strictement supérieur à \sqrt{n} .

Théorème. P est de cardinal infini.

Il faut savoir le démontrer.

1.6 Congruence

Définition. Relation de congruence : Soit $k \in \mathbb{Z}$. $\forall n, m \in \mathbb{Z}$, $n \equiv m$ $[k] \iff k | (n - m)$. C'est la relation de congruence modulo k, qui est une relation d'équivalence.

Propriété. Soit $a, b \in \mathbb{Z}$ avec $b \neq 0$: il existe $r \in \{0, \dots, |b| - 1\}$ tel que $a \equiv r$ [b]. r est le reste de la division euclidienne de a par b.

Notation. La classe d'équivalence de n modulo k est $\overline{n} = \{n + kh/h \in \mathbb{Z}\} \stackrel{\Delta}{=} n + k\mathbb{Z}$.

Compatibilités de la congruence avec l'addition et la multiplication :

Pour tout $n, m, h, k \in \mathbb{Z}$,

```
 -n \equiv m \ [k] \Longrightarrow h + n \equiv h + m \ [k] \text{ et}  -n \equiv m \ [k] \Longrightarrow hn \equiv hm \ [k].
```

Corollaire: $\forall a, b, k \in \mathbb{Z}, \ \forall n \in \mathbb{N}, \ (a \equiv b \ [k] \Longrightarrow a^n \equiv b^n \ [k]).$

Petit théorème de Fermat : (Admis pour le moment) Si $p \in \mathbb{P}$ et $a \in \mathbb{Z}$, $(a \not\equiv 0 \ [p]) \Longrightarrow a^{p-1} \equiv 1 \ [p]$, donc dans tous les cas, $a^p \equiv a \ [p]$.

Définition. Soit $x_0 \in \mathbb{R}$. Pour tout $x, y \in \mathbb{R}$, on dit que x est congru à y modulo x_0 et on note $x \equiv y$ $[x_0]$ si et seulement si il existe $k \in \mathbb{Z}$ tel que $x - y = kx_0$. La relation de congruence modulo x_0 est une relation d'équivalence sur \mathbb{R} . Elle est compatible avec l'addition entre réels mais pas avec la multiplication entre réels.

1.7 PGCD

Définition. Soit $(a,b) \in \mathbb{Z}^2$. $a\mathbb{Z} + b\mathbb{Z}$ est le sous-groupe de \mathbb{Z} engendré par $\{a,b\}$, donc il existe un unique $d \in \mathbb{N}$ tel que $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$. On dit que d est le PGCD de a et b. On note $d = \operatorname{PGCD}(a,b) = a \wedge b$.

Propriété. Pour la relation d'ordre de divisibilité dans \mathbb{N} , $a \wedge b = \inf_{\{|a|, |b|\}}$. Il faut savoir le démontrer.

Remarque. Lorsque a ou b est un entier relatif non nul, au sens de l'ordre naturel sur \mathbb{N} , $a \wedge b$ est aussi le plus grand diviseur commun de a et b.

Propriété. a et b sont premiers entre eux si et seulement si $a \wedge b = 1$.

Définition. Plus généralement, si $k \in \mathbb{N}^*$ et si $a_1, \ldots, a_k \in \mathbb{Z}$, on dit que d est le PGCD de a_1, \ldots, a_k si et seulement si $d \in \mathbb{N}$ et $d\mathbb{Z} = a_1\mathbb{Z} + \cdots + a_k\mathbb{Z} = Gr\{a_1, \ldots, a_k\}$. Alors $d = \inf_{|A_1, \ldots, A_k|}$. Si B est une partie quelconque de \mathbb{Z} , on dit que d est le PGCD de B si et seulement si $d \in \mathbb{N}$ et $d\mathbb{Z} = Gr(B)$. Alors $d = \inf_{|A_1, \ldots, A_k|}$.

Propriété. Soit $k \in \mathbb{N}$, $a_1, \ldots, a_k \in \mathbb{Z}$ et $h \in \{1, \ldots, k\}$.

- Commutativité du PGCD :
 - $PGCD(a_1,\ldots,a_k)$ ne dépend pas de l'ordre de a_1,\ldots,a_k .
- Associativité du PGCD :
 - $PGCD(a_1, \dots, a_k) = PGCD(a_1, \dots, a_k) \land PGCD(a_{h+1}, \dots, a_k).$
- Distributivité de la multiplication par rapport au PGCD : pour tout $\alpha \in \mathbb{Z}$, $PGCD(\alpha a_1, \ldots, \alpha a_k) = |\alpha| PGCD(a_1, \ldots, a_k)$.

Il faut savoir le démontrer.

1.8 **PPCM**

Définition. Soit $(a, b) \in \mathbb{Z}^2$. $a\mathbb{Z} \cap b\mathbb{Z}$ est un sous-groupe de \mathbb{Z} , donc il existe un unique entier naturel m tel que $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$. On dit que m est un PPCM de a et b et on note $m = a \vee b$.

Propriété. Soit $(a, b) \in \mathbb{Z}^2$. $a \lor b = \sup_{a \in \mathbb{Z}^2} \{|a|, |b|\}$.

Remarque. Lorsque a et b sont des entiers relatifs non nuls, $a \lor b = \min_{\leq} \{k \in \mathbb{N}^* / a | k \text{ et } b | k\}$.

Définition. Plus généralement, si $k \in \mathbb{N}^*$ et si $a_1, \ldots, a_k \in \mathbb{Z}$, on dit que m est le PPCM de a_1, \ldots, a_k si et seulement si $m \in \mathbb{N}$ et $m\mathbb{Z} = a_1\mathbb{Z} \cap \cdots \cap a_k\mathbb{Z}$. Alors $m = \sup_{|A| \in \mathbb{N}} \{a_1, \ldots, a_k\}$. Si B est une partie quelconque de \mathbb{Z} , on dit que m est le PPCM de B si et seulement si $m \in \mathbb{N}$ et $m\mathbb{Z} = \bigcap_{A \in \mathbb{N}} b\mathbb{Z}$. Alors $m = \sup_{A \in \mathbb{N}} \{a_1, \ldots, a_k\}$.

Remarque. Dans ce contexte, on convient que si $B = \emptyset$, $\bigcap_{b \in B} b\mathbb{Z} = \mathbb{Z}$, donc 1 est le PPCM de \emptyset .

Ainsi, toute partie de \mathbb{N} possède une borne supérieure et une borne inférieure pour la relation d'ordre de divisibilité. On dit que l'ensemble ordonné (\mathbb{N}, \mid) est un treillis complet.

Propriété. Soit $k \in \mathbb{N}$, $a_1, \ldots, a_k \in \mathbb{Z}$ et $h \in \{1, \ldots, k\}$.

- Commutativité du PPCM :
 - $PPCM(a_1, \ldots, a_k)$ ne dépend pas de l'ordre de a_1, \ldots, a_k .
- Associativité du PPCM :
 - $PPCM(a_1, \ldots, a_k) = PPCM(a_1, \ldots, a_k) \vee PPCM(a_{h+1}, \ldots, a_k).$
- Distributivité de la multiplication par rapport au PPCM : pour tout $\alpha \in \mathbb{Z}$, $PPCM(\alpha a_1, \dots, \alpha a_k) = |\alpha|PPCM(a_1, \dots, a_k)$.

1.9 Les théorèmes de l'arithmétique

Théorème de *Bézout*. Soit $(a, b) \in \mathbb{Z}^2$.

a et b sont premiers entre eux si et seulement si : $\exists (u,v) \in \mathbb{Z}^2 \ ua + vb = 1$.

Il faut savoir le démontrer.

Théorème de Bézout (généralisation). Soit $n \in \mathbb{N}$ avec $n \geq 2$ et $a_1, \ldots, a_n \in \mathbb{Z}$. a_1, \ldots, a_n sont globalement premiers entre eux si et seulement si :

 $\exists u_1, \dots, u_n \in \mathbb{Z} \ , \ u_1 a_1 + \dots + u_n a_n = 1.$

Propriété. Soit $(a, b) \in \mathbb{Z}^2$. Posons $d = a \wedge b$.

Alors il existe $(a',b') \in \mathbb{Z}^2$, avec a' et b' premiers entre eux, tel que a=a'd et b=b'd.

Théorème de *Gauss*. Soit $(a, b, c) \in \mathbb{Z}^3$. Si a|bc avec a et b premiers entre eux, alors a|c. Il faut savoir le démontrer.

Corollaire. Soit $p, a, b \in \mathbb{Z}$. Si $p \mid ab$ et si p est premier, alors $p \mid a$ ou $p \mid b$.

Corollaire. Soit $(a, b, c) \in \mathbb{Z}^3$, $n \in \mathbb{N}^*$ et $a_1, \ldots, a_n \in \mathbb{Z}$.

- \diamond Si $a \wedge b = a \wedge c = 1$, alors $a \wedge bc = 1$.
- \diamond On en déduit que, si $a \wedge b = 1, \forall (k, l) \in (\mathbb{N}^*)^2$ $a^k \wedge b^l = 1$.
- \diamond Si a|b,c|b et $a \land c = 1$ alors ac|b. Par récurrence, on en déduit que

si pour tout $i \in \{1, ..., n\}$, $a_i | b$ et si $i \neq j \Longrightarrow a_i \land a_j = 1$, alors $a_1 \times \cdots \times a_n \mid b$.

 $\diamond |ab| = (a \land b)(a \lor b)$. En particulier, $a \land b = 1 \Longrightarrow a \lor b = |ab|$.

Il faut savoir le démontrer.

Théorème fondamental de l'arithmétique. Pour tout $a \in \mathbb{N}^*$, il existe une unique famille $(\nu_p)_{p \in \mathbb{P}} \in \mathbb{N}^{(\mathbb{P})}$ (i.e telle que $\{p \in \mathbb{P} \mid \nu_p \neq 0\}$ est fini) telle que $a = \prod_{p \in \mathbb{P}} p^{\nu_p}$.

C'est la décomposition de a en facteurs premiers. ν_p s'appelle la valuation p-adique de a.

Il faut savoir le démontrer.

$$\begin{aligned} & \textbf{Propriété.} & \text{si } a = \prod_{p \in \mathbb{P}} p^{\nu_p} \text{ et } b = \prod_{p \in \mathbb{P}} p^{\mu_p}, \text{ Alors } a \mid b \Longleftrightarrow [\forall p \in \mathbb{P}, \ \nu_p \leq \mu_p]. \\ & \text{De plus, } a \wedge b = \prod_{p \in \mathbb{P}} p^{\min(\nu_p, \mu_p)} \text{ et } a \vee b = \prod_{p \in \mathbb{P}} p^{\max(\nu_p, \mu_p)}. \end{aligned}$$

Lemme d'Euclide. Soient $(a,b) \in \mathbb{Z}^2$ avec $b \neq 0$. Notons q et r les quotient et reste de la division euclidienne de a par b. Alors $a \wedge b = b \wedge r$.

Algorithme d'Euclide. Soit $a_0, a_1 \in \mathbb{N}^*$ avec $a_0 > a_1$.

Pour $i \geq 1$, tant que $a_i \neq 0$, on note a_{i+1} le reste de la division euclidienne de a_{i-1} par a_i . On définit ainsi une suite strictement décroissante d'entiers naturels $(a_i)_{0 \leq i \leq N}$ telle que $a_N = 0$. Alors $a_0 \wedge a_1 = a_{N-1}$.

De plus, lorsque $a_0 \wedge a_1 = 1$, cet algorithme permet de calculer des entier s_0 et t_0 tels que $1 = s_0 a_0 + t_0 a_1$. À connaître précisément.

Exercice. Soit $a,b,c\in\mathbb{Z}$ avec a et b non nuls. Résoudre l'équation de Bézout (B): au+bv=c en l'inconnue $(u,v)\in\mathbb{Z}^2$. À connaître.

2 0

Définition. On définit une relation binaire R sur $\mathbb{Z} \times \mathbb{Z}^*$ par $(a,b)R(c,d) \iff ad = bc$. C'est une relation d'équivalence. On pose $\mathbb{Q} = (\mathbb{Z} \times \mathbb{Z}^*)/R$. Pour tout $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$, on note $\frac{a}{b} = \overline{(a,b)}$.

Pour l'écriture $\frac{a}{b}$, on dit que a est son numérateur et que b est son dénominateur.

Pour tout $(a,b),(c,d)\in\mathbb{Z}\times\mathbb{Z}^*$, on pose $\frac{a}{b}\times\frac{c}{d}\stackrel{\Delta}{=}\frac{ac}{bd}$ et $\frac{a}{b}+\frac{c}{d}\stackrel{\Delta}{=}\frac{ad+cb}{bd}$. On définit ainsi une addition et une multiplication sur \mathbb{Q} .

Propriété. $(\mathbb{Q}, +, \times)$ est un corps, c'est-à-dire que

- $(\mathbb{Q}, +, \times)$ est un anneau,
- \mathbb{Q} n'est pas réduit à $\{0\}$ (on note $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$),
- \mathbb{Q} est commutatif,
- tout élément non nul de \mathbb{Q} est inversible : $\forall x \in \mathbb{Q}^*, \exists y \in \mathbb{Q}^*, xy = 1$.