DS 2

Les calculatrices sont interdites.

Exercices

Exercice 1:

Déterminer le domaine de définition puis simplifier la quantité $tan(2 \arccos(x))$.

Exercice 2:

Sans en rechercher le domaine de définition, calculer la dérivée de la fonction $x \longmapsto \frac{\sin \frac{1}{x}}{\ln^3 x}$.

Exercice 3:

Pour tout $n \in \mathbb{N}$, calculer $\int_1^e t^n \ln^2(t) dt$.

Exercice 4:

Calculer
$$I = \int_{-1}^{1} \frac{x}{x^2 + 2x + 5} dx$$
.

Problème: La constante d'Euler

Partie I : Définition de γ

1°) Soit $(x_p)_{\substack{p\in\mathbb{N}\\m}}$ une suite de réels. Soit $m,n\in\mathbb{N}$ avec $m\geq n$.

Montrer que
$$\sum_{p=n}^{m} (x_p - x_{p+1}) = x_n - x_{m+1}$$
.

Simplifier de même la quantité $\sum_{p=n+1}^{m} (x_{p-1} - x_p)$.

Pour tout
$$n \in \mathbb{N}^*$$
, on pose $a_n = \frac{1}{n} - \int_n^{n+1} \frac{dt}{t}$ et $S_n = \sum_{p=1}^n a_p$.

1

- **2°)** Montrer que, pour tout $n \in \mathbb{N}^*$, $0 \le a_n \le \frac{1}{n} \frac{1}{n+1}$.
- **3°)** En déduire que la suite $(S_n)_{n\in\mathbb{N}^*}$ converge vers un réel que l'on notera γ et qui est appelé la constante d'Euler. Montrer que $\gamma\in[0,1]$.
- **4**°) Montrer que, pour tout $n \in \mathbb{N}^*$, $a_n = \frac{1}{n} \int_0^1 \frac{t}{t+n} dt$.

En déduire que, pour tout $n \in \mathbb{N}$ avec $n \ge 2$, $\frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right) \le a_n \le \frac{1}{2} \left(\frac{1}{n-1} - \frac{1}{n} \right)$.

- **5**°) En déduire que, pour tout $n \in \mathbb{N}^*$, $\frac{1}{2n+2} \le \gamma S_n \le \frac{1}{2n}$.
- 6°) Montrer que $\frac{\ln(1+x)}{x} \xrightarrow[x \to 0]{x \to 0} 1$.

En déduire que $\ln(n+1) = \ln n + \frac{1}{n} + \frac{\varepsilon_1(n)}{n}$, où $(\varepsilon_1(n))_{n \in \mathbb{N}^*}$ est une suite qui tend vers 0 lorsque n tend vers $+\infty$.

7°) En déduire que, pour tout $n \in \mathbb{N}^*$, $\sum_{p=1}^n \frac{1}{p} = \ln n + \gamma + \frac{1}{2n} + \frac{\varepsilon_2(n)}{n}$, où $(\varepsilon_2(n))_{n \in \mathbb{N}^*}$ est une suite qui tend vers 0 lorsque n tend vers $+\infty$.

Partie II : Intégrer entre 0 et $+\infty$.

Définition 1 : Soit $a \in \mathbb{R}$ et soit f une application continue de $[a, +\infty[$ dans \mathbb{R} . Lorsqu'il existe $\ell \in \mathbb{R}$ tel que $\int_a^x f(t) \ dt \xrightarrow[x \to +\infty]{} \ell$, on dit que $\int_a^{+\infty} f(t) \ dt$ est définie et on pose $\int_a^{+\infty} f(t) \ dt = \ell$.

- 8°) Montrer que les intégrales suivantes sont définies et préciser leurs valeurs : $\int_{1}^{+\infty} \frac{dt}{t^2}, \int_{1}^{+\infty} \frac{dt}{1+t^2}, \int_{1}^{+\infty} e^{-t} dt.$
- 9°) Soit $a \in \mathbb{R}$. Soient f et g deux applications de $[a, +\infty[$ dans \mathbb{R} . On suppose que $\int_{a}^{+\infty} g(t) dt$ est définie et que, pour tout $t \in [a, +\infty[$, $0 \le f(t) \le g(t)$.

Montrer que $\int_{a}^{+\infty} f(t) dt$ est également définie et que $0 \le \int_{a}^{+\infty} f(t) dt \le \int_{a}^{+\infty} g(t) dt$.

10°) Montrer que $\int_1^{+\infty} \frac{e^{-t}}{t} dt$ et $\int_1^{+\infty} \frac{e^{-t}}{1 - e^{-t}} dt$ sont définies.

- 11°) Soit f une application de classe C^{∞} , définie sur un intervalle I de \mathbb{R} et à valeurs dans \mathbb{R} . Soit $a, b \in I$. Montrer que, pour tout $n \in \mathbb{N}$,
- $f(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + \int_a^{\bar{b}} \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt : \text{il s'agit de la formule de Taylor avec reste intégral.}$
- 12°) En déduire que, pour tout $t \in \mathbb{R}$, $e^t = 1 + t + \frac{t^2}{2} + t^2 \varepsilon_3(t)$, où $\varepsilon_3(t)$ est une application définie sur \mathbb{R} telle que $\varepsilon_3(t) \xrightarrow[t \to 0]{t \to 0} 0$.
- 13°) Pour tout $t \in \mathbb{R}^*$, notons $g(t) = \frac{1}{1 e^{-t}} \frac{1}{t}$.

Déduire de la question précédente que g(t) converge vers un réel que l'on déterminera, lorsque t tend vers 0. On note alors g(0) ce réel, si bien que g devient une application définie et continue sur \mathbb{R} .

Définition 2 : Soit $a \in \mathbb{R}_+^*$. On suppose que f est une application continue de]0,a] dans \mathbb{R} . Lorsqu'il existe $\ell \in \mathbb{R}$ tel que $\int_x^a f(t) \ dt \xrightarrow[x>0]{x\to 0} \ell$, on dit que $\int_0^a f(t) \ dt$ est définie et on pose $\int_0^a f(t) \ dt = \ell$.

Définition 3 : On suppose que f est une application continue de \mathbb{R}_+^* dans \mathbb{R} .

On dit que $\int_0^{+\infty} f(t) dt$ est définie si et seulement si $\int_0^1 f(t) dt$ et $\int_1^{+\infty} f(t) dt$ sont définies et dans ce cas, on pose $\int_0^{+\infty} f(t) dt = \int_0^1 f(t) dt + \int_1^{+\infty} f(t) dt$.

14°) Soit f_1 et f_2 deux applications continues de \mathbb{R}_+^* dans \mathbb{R} . Soit $a_1, a_2 \in \mathbb{R}$. On suppose que $\int_0^{+\infty} f_1(t) dt$ et $\int_0^{+\infty} f_2(t) dt$ sont définies.

Montrer que $\int_0^{+\infty} (a_1 f_1(t) + a_2 f_2(t)) dt$ sont définies et

que
$$\int_0^{+\infty} (a_1 f_1(t) + a_2 f_2(t)) dt = a_1 \int_0^{+\infty} f_1(t) dt + a_2 \int_0^{+\infty} f_2(t) dt$$
.

Partie III : Une expression de γ sous forme intégrale.

- 15°) Montrer que $\int_0^{+\infty} e^{-t} \left(\frac{1}{1 e^{-t}} \frac{1}{t} \right) dt$ est définie.
- 16°) Montrer que, pour tout $a, b, x, y \in \mathbb{R}_+^*$, $\int_x^y \frac{e^{-at} e^{-bt}}{t} dt = \int_{ax}^{bx} \frac{e^{-t}}{t} dt \int_{ay}^{by} \frac{e^{-t}}{t} dt.$

17°) Soit
$$a, b \in \mathbb{R}_+^*$$

Montrer que
$$\int_{ax}^{bx} \frac{e^{-t}}{t} dt \xrightarrow[x>0]{x\to 0} \ln b - \ln a$$
.

Montrer que
$$\int_{ax}^{bx} \frac{e^{-t}}{t} dt \xrightarrow[x \to +\infty]{} 0.$$

18°) Montrer que, pour tout
$$a, b \in \mathbb{R}_+^*$$
, $\int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \ln \frac{b}{a}$.

Définition 4 : Soit $n_0 \in \mathbb{N}$ et soit $(x_n)_{n \geq n_0}$ une suite de réels définie pour tout entier $n \geq n_0$. Lorsqu'il existe $\ell \in \mathbb{R}$ tel que $\sum_{n=n_0}^N x_n \xrightarrow[N \to +\infty]{} \ell$, on dit que $\sum_{n=n_0}^{+\infty} x_n$ est définie et

on pose
$$\ell = \sum_{n=n_0}^{+\infty} x_n$$
.

19°) Soit
$$t \in \mathbb{R}_+^*$$
. Montrer que $\frac{1}{1 - e^{-t}} = \sum_{n=0}^{+\infty} e^{-nt}$ et $\frac{1}{t} = \sum_{n=0}^{+\infty} \left(\frac{e^{-nt} - e^{(n+1)t}}{t} \right)$.

20°) Pour tout
$$t \in \mathbb{R}_+^*$$
, on pose $h(t) = 1 - \frac{1 - e^{-t}}{t}$.

Montrer que
$$h(t) \xrightarrow[t\to 0]{t\to 0} 0$$
.

Ainsi, en posant h(0) = 0, h devient une application continue sur \mathbb{R}_+ .

Montrer que, pour tout
$$t \in \mathbb{R}_+^*$$
, $h(t) \ge 0$.

Montrer que, pour tout
$$t \in [1, +\infty[, h(t) \le 2.$$

Montrer que, pour tout
$$t \in [0, 1]$$
, $h(t) \le \frac{t}{2}$.

21°) En admettant que l'on peut intervertir les deux opérateurs "
$$\int_0^{+\infty}$$
" et " $\sum_{n=0}^{+\infty}$ ", montrer que $\gamma = \int_0^{+\infty} e^{-t} \left(\frac{1}{1-e^{-t}} - \frac{1}{t}\right) dt$.

22°) Montrer que pour justifier l'interversion précédemment admise, il suffit d'établir que
$$\int_0^{+\infty} \left(\sum_{n=N+1}^{+\infty} e^{-(n+1)t} h(t)\right) dt \xrightarrow[N \to +\infty]{} 0.$$

23°) Montrer que
$$\int_{1}^{+\infty} \left(\sum_{n=N+1}^{+\infty} e^{-(n+1)t} h(t) \right) dt \xrightarrow[N \to +\infty]{} 0.$$