DM 11:

Partitions de chaînes et d'antichaînes

Il s'agit d'un sujet supplémentaire pour votre travail personnel. Il n'est pas à rendre.

Un corrigé sera fourni jeudi 30 octobre.

Notations:

- Lorsque $n \in \mathbb{N}$, on note \mathbb{N}_n l'ensemble des entiers compris entre 1 et n. En particulier, $\mathbb{N}_0 = \emptyset$.
- Pour tout ensemble E, on note $\mathcal{P}(E)$ l'ensemble des parties de E.
- Pour tout ensemble fini E, on notera |E| son cardinal.

Rappels:

- Deux ensembles finis E et F ont le même cardinal si et seulement si il existe une bijection de E dans F.
- Si E et F sont deux ensembles finis tels que |E| = |F| et $E \subset F$, alors E = F.
- Si E et F sont deux ensembles finis de même cardinal, une application f de E dans F est bijective si et seulement si elle est injective, ou bien si et seulement si elle est surjective.

Dans tout ce problème, E désigne un ensemble fini

et \leq désigne une relation d'ordre quelconque sur E.

Si F est une partie de E, la restriction de \leq sur F est encore une relation d'ordre, que l'on continue à noter \leq (on ne demande pas de le démontrer).

Lorsque $C \subset E$, on dit que C est une chaîne de E si et seulement si \leq est un ordre total sur C.

Lorsque $A \subset E$, on dit que A est une antichaı̂ne de E si et seulement si pour tout $x, y \in A$ avec $x \neq y$, x et y ne sont pas comparables pour \leq .

Si $P = (P_1, \dots, P_n)$ est un *n*-uplet de parties de E (où $n \in \mathbb{N}$), on dit que P est une partition de E si et seulement si

- Pour tout $i \in \mathbb{N}_n$, $P_i \neq \emptyset$;
- Pour tout $i, j \in \mathbb{N}_n$ avec $i \neq j, P_i \cap P_j = \emptyset$;
- $-\bigcup_{1\leq i\leq n}P_i=E.$

Lorsque $P = (P_1, ..., P_n)$ est un n-uplet de parties de E, on dit que c'est une partition de chaînes si et seulement si c'est une partition telle que, pour tout $i \in \mathbb{N}_n$, P_i est une chaîne.

De même, lorsque $P = (P_1, \dots, P_n)$ est un n-uplet de parties de E, on dit que c'est une partition d'antichaînes si et seulement si c'est une partition telle que, pour tout $i \in \mathbb{N}_n$, P_i est une antichaîne.

Partie I : Préliminaires

- 1°) Si E est non vide, montrer qu'il possède au moins un élément minimal.
- **2°**) On suppose que \leq est un ordre total sur E et que E est non vide. Montrer que E admet un minimum.
- 3°) Déterminer les parties A de E telles que A est à la fois une chaîne et une antichaîne. En déduire que l'intersection d'une chaîne de E avec une antichaîne de E est ou bien vide, ou bien un singleton.
- **4**°) Montrer que si C est une chaîne de E, en notant n = |C|, il existe une unique bijection strictement croissante de \mathbb{N}_n dans C.

Ainsi, toute chaîne de E est de la forme

$$C = \{f(1), \dots, f(n)\}, \text{ avec } f(1) < f(2) < \dots < f(n).$$

Dans ce cas, on dit que C est une chaîne de longueur n et d'origine f(1).

- 5°) Soit C une chaîne de E et $P=(P_1,\ldots,P_n)$ une partition d'antichaînes de E. Montrer que, pour tout $c\in C$, il existe un unique $i_c\in\mathbb{N}_n$ tel que $c\in P_{i_c}$. Montrer que l'application $c\longmapsto i_c$ est une injection de C dans \mathbb{N}_n . En déduire que $|C|\leq n$.
- **6**°) Soit A une antichaîne de E et $P = (P_1, \ldots, P_n)$ une partition de chaînes de E. Montrer que $|A| \leq n$.

Pour toute la suite du problème, on note

- \mathcal{C} l'ensemble des cardinaux des chaînes de E;
- \mathcal{A} l'ensemble des cardinaux des antichaînes de E;
- \mathcal{P}_C l'ensemble des entiers n pour lesquels il existe une partition (P_1, \dots, P_n) de chaînes de E;
- \mathcal{P}_A l'ensemble des entiers n pour lesquels il existe une partition (P_1, \ldots, P_n) d'antichaînes de E.
- **7°)** A l'aide des questions précédentes, démontrer une inégalité reliant $\max(\mathcal{C})$ et $\min(\mathcal{P}_A)$, ainsi qu'une inégalité reliant $\max(\mathcal{A})$ et $\min(\mathcal{P}_C)$.

Partie II: Deux exemples

- 8°) Pour cette question, on suppose que $E = \mathcal{P}(\mathbb{N}_3)$, et que \leq est la relation d'inclusion entre parties de E.
- a) Dessinez, sans justification, un graphe dont les sommets sont les éléments de E et tel qu'une arête va du sommet s vers le sommet s' si et seulement si s < s' et si, pour tout $s'' \in E$, $\neg (s < s'' < s')$.

- **b)** Calculer $\max(\mathcal{C})$ et $\min(\mathcal{P}_A)$.
- c) Calculer $\max(\mathcal{A})$ et $\min(\mathcal{P}_C)$.
- **9°)** Pour cette question, on suppose que $E = \mathbb{N}_{10}$, et que \leq est la relation de divisibilité.
- a) Montrer qu'il s'agit bien d'une relation d'ordre.
- b) Dessinez, sans justification, un graphe dont les sommets sont les éléments de E et tel qu'une arête va du sommet s vers le sommet s' si et seulement si s < s' et si, pour tout $s'' \in E$, $\neg(s < s'' < s')$.
- c) Calculer $\max(\mathcal{C})$ et $\min(\mathcal{P}_A)$.
- d) Calculer $\max(\mathcal{A})$ et $\min(\mathcal{P}_C)$.

Partie III : Partitions de chaînes

Pour tout $x \in E$, on note f(x) le maximum des longueurs des chaînes d'origine x. Cela signifie, en notant \mathcal{D} l'ensemble des chaînes de E que

$$f(x) = \max(\{|C| / C \in \mathcal{D} \text{ et } x = \min(C)\}).$$

On note également $\ell = \max(\mathcal{C})$.

Ainsi, il existe $x_1, \ldots, x_\ell \in E$ tels que $x_1 < x_2 < \cdots < x_\ell$.

Pour tout $i \in \mathbb{N}_{\ell}$, on pose $A_i = \{x \in E / f(x) = i\}$.

- **10°)** Montrer que, pour tout $i \in \mathbb{N}_{\ell}$, $f(x_i) = \ell i + 1$.
- 11°) Montrer que (A_1, \ldots, A_ℓ) est une partition de E.
- 12°) Montrer que, pour tout $i \in \mathbb{N}_{\ell}$, A_i est une antichaîne. En déduire que $\max(\mathcal{C}) = \min(\mathcal{P}_A)$.
- 13°) Donner une autre démonstration de ce dernier résultat en raisonnant par récurrence sur le cardinal de E et en utilisant l'ensemble des éléments maximaux de E.

Partie IV : Cas particulier de $\mathcal{P}(\mathbb{N}_n)$

Dans cette partie seulement, on suppose que $E = \mathcal{P}(\mathbb{N}_n)$, où $n \in \mathbb{N}$, et que \leq est la relation d'inclusion.

On rappelle que, pour tout $k \in \{0, ..., n\}$, le nombre d'éléments de E de cardinal k est égal à $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, c'est-à-dire que

$$|\{F \subset \mathbb{N}_n / |F| = k\}| = \binom{n}{k}.$$

14°) Déterminer une chaîne de cardinal n+1 et une antichaîne de cardinal $\binom{n}{\lfloor \frac{n}{2} \rfloor}$, où $\lfloor . \rfloor$ désigne la partie entière.

15°) Sans utiliser la partie III, calculer $\max(\mathcal{C})$ et $\min(\mathcal{P}_A)$.

On appelle "chaîne symétrique" de E, toute chaîne de la forme $C = \{E_k, E_{k+1}, \dots, E_{n-k}\}$, où k est un entier naturel tel que $k \leq n-k$, et où E_k, \dots, E_{n-k} sont des éléments de E tels que $E_k \subset E_{k+1} \subset \dots \subset E_{n-k}$ et, pour tout $i \in \{k, k+1, \dots, n-k\}, |E_i| = i$.

- 16°) Lorsque n = 1, n = 2 et n = 3, donner une partition de E constituée de chaînes symétriques.
- 17°) On suppose que $n \geq 1$ et que C est une chaîne symétrique de $\mathcal{P}(\mathbb{N}_{n-1})$. Ainsi, $C = \{E_k, E_{k+1}, \dots, E_{n-1-k}\}$, où k est un entier naturel tel que $k \leq n-1-k$, et où E_k, \dots, E_{n-1-k} sont des éléments de $\mathcal{P}(\mathbb{N}_{n-1})$ tels que $E_k \subset E_{k+1} \subset \dots \subset E_{n-1-k}$ et, pour tout $i \in \{k, k+1, \dots, n-1-k\}, |E_i| = i$. Montrer que $\{E_k, E_{k+1}, \dots, E_{n-1-k}, E_{n-1-k} \cup \{n\}\}$ est une chaîne symétrique de E et que $\{E_k \cup \{n\}, E_{k+1} \cup \{n\}, \dots, E_{n-2-k} \cup \{n\}\}$ est ou bien l'ensemble vide, ou bien une
- 18°) En déduire qu'il existe une partition de E constituée de chaînes symétriques.
- **19°)** Montrer que, pour toute partition (P_1, \ldots, P_N) de E telle que P_1, \ldots, P_N sont des chaînes symétriques, on a $N = \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$.

En déduire que $\max(\mathcal{A}) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$ (théorème de Sperner).

Sans calcul, en déduire que, pour tout $k \in \{0, \dots, n\}, \binom{n}{k} \le \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Partie V : Théorème de Dilworth

E désigne à nouveau un ensemble fini quelconque muni d'une relation d'ordre quelconque que l'on note \leq . L'objectif de cette partie est de montrer que $\max(\mathcal{A}) = \min(\mathcal{P}_C)$ (théorème de Dilworth).

On suppose que le théorème de Dilworth est démontré lorsqu'on remplace E par n'importe quel ensemble de cardinal strictement inférieur à |E|.

On choisit une chaîne C de E telle que $|C| = \max(C)$.

On pose $\alpha = \max(A)$.

chaîne symétrique de E,

20°) On suppose d'abord que, pour toute antichaîne A de cardinal α de E, $C \cap A \neq \emptyset$, c'est-à-dire que C rencontre toutes les antichaînes de E de cardinal maximal. En utilisant $E \setminus C$, montrer que $\max(A) = \min(\mathcal{P}_C)$.

On suppose maintenant qu'il existe une antichaı̂ne A de cardinal α telle que $A \cap C = \emptyset$. On pose $A_+ = \{x \in E \mid \exists a \in A, \ a \leq x\}$ et $A_- = \{x \in E \mid \exists a \in A, \ x \leq a\}$.

- **21°)** Montrer que $A_+ \cup A_- = E$ et que $A_+ \cap A_- = A$.
- **22**°) En utilisant $\min(C)$ et $\max(C)$, montrer que $A_+ \neq E$ et que $A_- \neq E$.
- 23°) Conclure.