DM 11 : un corrigé

Partie I : Préliminaires

 1°) Supposons que E ne possède aucun élément minimal.

E est non vide, donc il existe $e_1 \in E$.

 e_1 n'est pas minimal dans E, donc il existe $e_2 \in E$ tel que $e_2 < e_1$.

 e_2 n'est pas minimal dans E, donc il existe $e_3 \in E$ tel que $e_3 < e_2$.

Soit $n \in \mathbb{N}^*$. Supposons construits $e_1, \ldots, e_n \in E$ tels que $e_n < e_{n-1} < \cdots < e_1$. Alors e_n n'est pas minimal dans E, donc il existe $e_{n+1} \in E$ tel que $e_{n+1} < e_n$.

Ainsi, on construit par récurrence une suite $(e_k)_{k\in\mathbb{N}^*}$ d'éléments de E strictement décroissante.

Soit $h, k \in \mathbb{N}^*$ tels que h < k. Alors $e_h < e_k$, donc $e_h \neq e_k$.

Ainsi, l'ensemble $\{e_k \mid k \in \mathbb{N}^*\}$ est une partie infinie de E, ce qui est impossible car E est fini. Ceci démontre que E possède au moins un élément minimal.

- **2°)** D'après la question précédente, E admet au moins un élément minimal, noté m. Soit $e \in E$. m étant minimal, on a $\neg (e < m)$, or l'ordre est total, donc $m \le e$. Ainsi, m est le minimum de E.
- 3°) \diamond Soit A une partie de E.

Supposons que $|A| \geq 2$. Il existe $a, b \in A$ tel que $a \neq b$.

Si a et b sont comparables, alors A n'est pas une antichaîne.

Si a et b ne sont pas comparables, alors A n'est pas une chaîne.

Ainsi, dans tous les cas, A n'est pas à la fois une chaîne et une antichaîne.

Réciproquement, supposons que $|A| \leq 1$. Alors A est un singleton ou bien est égal à l'ensemble vide. A ne contient aucun couple d'éléments distincts, donc c'est une antichaîne et une chaîne.

Conclusion, A est à la fois une chaîne et une antichaîne si et seulement si $|A| \le 1$.

- \diamond Soit C une chaîne de E et A une antichaîne de E. Alors $A \cap C$ est une chaîne, en tant que partie de la chaîne C, et c'est aussi une antichaîne, en tant que partie de l'antichaîne A. Ainsi, d'après le point précédent, $|A \cap C| \leq 1$, ce qu'il fallait démontrer.
- 4°) Analyse: Supposons qu'il existe une bijection f strictement croissante de \mathbb{N}_n dans C. Soit $k \in \mathbb{N}_n$. Alors $C \setminus \{f(1), \ldots, f(k-1)\} = \{f(k), f(k+1), \ldots, f(n)\}$, donc $C \setminus \{f(1), \ldots, f(k-1)\}$ admet un minimum et $f(k) = \min(C \setminus \{f(1), \ldots, f(k-1)\})$. Ceci définit par récurrence la suite $(f(k))_{1 \le k \le n}$, à partir de C, ce qui prouve l'unicité.

Synthèse: Notons $(f(k))_{1 \leq k \leq n}$ la suite définie par la relation de récurrence suivante: $f(k) = \min(C \setminus \{f(1), \dots, f(k-1)\})$, pour tout $k \in \mathbb{N}_n$.

Il s'agit de montrer que f est une bijection strictement croissante de \mathbb{N}_n dans C.

Soit $k \in \mathbb{N}_{n-1}$. $f(k+1) \in C \setminus \{f(1), \dots, f(k)\}$, donc $f(k+1) \neq f(k)$.

De plus, $f(k+1) \in C \setminus \{f(1), \dots, f(k-1)\},\$

donc $f(k) = \min(C \setminus \{f(1), \dots, f(k-1)\}) \le f(k+1)$. Ainsi, f(k) < f(k+1), ce qui prouve que f est strictement croissante.

Soit $h, k \in \mathbb{N}_n$ avec h < k. Alors f(h) < f(k), donc $f(h) \neq f(k)$. Ainsi f est une application injective, de C dans \mathbb{N}_n avec n = |C|, donc c'est une bijection.

5°)
$$\diamond$$
 Soit $c \in C$. $c \in E = \bigcup_{1 \le i \le n} P_i$, donc il existe $i_c \in \mathbb{N}_n$ tel que $c \in P_{i_c}$.

Supposons qu'il existe $j \in \mathbb{N}_n$ tel que $c \in P_j$. Alors $P_{i_c} \cap P_j \neq \emptyset$, donc $i_c = j$, ce qui prouve l'unicité de i_c .

 \diamond Soit $c, d \in C$ tel que $i_c = i_d$.

Alors $c, d \in C \cap P_{i_c}$, donc d'après la question 3, c = d. Ceci prouve que l'application $c \longmapsto i_c$ est une injection de C dans \mathbb{N}_n .

- \diamond Notons f cette application. Alors $f|_{f(C)}$ est une bijection, donc |C| = |f(C)|, mais f(C) est une partie de \mathbb{N}_n , donc $|C| \leq n$.
- **6**°) De même que pour la question précédente, pour tout $a \in A$, il existe un unique $i_a \in \mathbb{N}_n$ tel que $a \in P_{i_a}$.

Soit $a, b \in A$ tel que $i_a = i_b$. Alors $a, b \in A \cap P_{i_a}$, donc a = b. Ceci prouve que l'application $a \longmapsto i_a$ est une injection de A dans \mathbb{N}_n . Alors, comme lors de la question précédente, on en déduit que $|A| \leq n$.

7°) $\diamond \emptyset$ est une chaîne ainsi qu'une antichaîne de E, donc \mathcal{C} et \mathcal{A} sont des parties non vides de \mathbb{N} , majorées par le cardinal de E. D'après le cours, $\max(\mathcal{C})$ et $\max(\mathcal{A})$ sont donc définis.

Pour tout $e \in E$, $\{e\}$ est à la fois une chaîne et une antichaîne, donc la famille $(\{e\})_{e \in E}$ est une partition de chaînes et d'antichaînes de E (même lorsque E est vide). Ainsi, \mathcal{P}_A et \mathcal{P}_C sont des parties non vides de \mathbb{N} . D'après le cours, $\min(\mathcal{P}_A)$ et $\min(\mathcal{P}_C)$ sont définis.

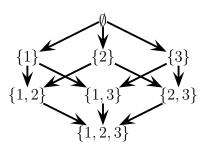
 \diamond Il existe une chaîne C de E de cardinal $\max(C)$. Posons $n = \min(P_A)$. Il existe donc une partition d'antichaînes de E de cardinal n.

D'après la question 5, $\max(\mathcal{C}) = |\mathcal{C}| \le n$. Ceci prouve que $\max(\mathcal{C}) \le \min(\mathcal{P}_A)$.

De même, la question 6 permet de prouver que $\left| \max(\mathcal{A}) \leq \min(\mathcal{P}_C) \right|$.

Partie II: Deux exemples

 8°) a)



b) Notons $C = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}\}.$

C est une chaîne car $\emptyset \subsetneq \{1\} \subsetneq \{1,2\} \subsetneq \{1,2,3\}$.

Ainsi, $\max(\mathcal{C}) \ge |C| = 4$.

De plus, si l'on pose $P_1 = \{\emptyset\}$, $P_2 = \{\{1\}, \{2\}, \{3\}\}\}$, $P_3 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}\}$ et $P_4 = \{\{1, 2, 3\}\}$, alors (P_1, P_2, P_3, P_4) est une partition d'antichaînes de E.

Ainsi, $\min(\mathcal{P}_A) \leq 4$. On en déduit que $\max(\mathcal{C}) \geq 4 \geq \min(\mathcal{P}_A)$, donc d'après la question 7, $\left[\max(\mathcal{C}) = 4 = \min(\mathcal{P}_A)\right]$.

c) Notons $A = \{\{1\}, \{2\}, \{3\}\}\}$. A est une antichaîne, donc $\max(A) \ge |A| = 3$.

De plus, si l'on pose $P_1 = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}\}, P_2 = \{\{2\}, \{2, 3\}\}\}$ et $P_3 = \{\{3\}, \{1, 3\}\},$ alors (P_1, P_2, P_3) est une partition de chaînes de E.

Ainsi, $\min(\mathcal{P}_C) \leq 3$. On en déduit que $\max(\mathcal{A}) \geq 3 \geq \min(\mathcal{P}_C)$, donc d'après la question 7, $\max(\mathcal{A}) = 3 = \min(\mathcal{P}_C)$.

 $9^{\circ})$

a) Pour tout $n \in E$, n|n, donc "|" est réflexive.

Soit $n, m \in \mathbb{N}$ tels que n | m et m | n. Alors il existe $h, k \in \mathbb{N}$ tels que n = km et m = hn. On en déduit que n = khn, or $n \neq 0$, donc 1 = kl, donc d'après le cours, h = k = 1 puis n = m. Ainsi, "|" est antisymétrique.

Soit n, m, p tels que n|m et m|p. Il existe $h, k \in \mathbb{N}$ tels que m = kn et p = hm, donc p = hkn, ce qui prouve que n|p. Ainsi, "|" est transitive.

En conclusion, "|" est bien une relation d'ordre.

b)

c) Notons $C = \{1, 2, 4, 8\}$. C est une chaîne, donc $\max(C) \ge |C| = 4$.

De plus, si l'on pose $P_1 = \{1\}$, $P_2 = \{3, 2, 5, 7\}$, $P_3 = \{9, 6, 4, 10\}$ et $P_4 = \{8\}$, alors (P_1, P_2, P_3, P_4) est une partition d'antichaînes de E.

Ainsi, $\min(\mathcal{P}_A) \leq 4$. On en déduit que $\max(\mathcal{C}) \geq 4 \geq \min(\mathcal{P}_A)$, donc d'après la question 7, $\left[\max(\mathcal{C}) = 4 = \min(\mathcal{P}_A)\right]$.

d) Notons $A = \{9, 6, 4, 10, 7\}$. A est une antichaîne, donc $\max(\mathcal{A}) \geq |A| = 5$. De plus, si l'on pose $P_1 = \{1, 2, 4, 8\}$, $P_2 = \{3, 9\}$, $P_3 = \{6\}$, $P_4 = \{5, 10\}$, $P_5 = \{7\}$, alors $(P_1, P_2, P_3, P_4, P_5)$ est une partition de chaînes de E. Ainsi, $\min(\mathcal{P}_C) \leq 5$. On en déduit que $\max(\mathcal{A}) \geq 5 \geq \min(\mathcal{P}_C)$, donc d'après la question 7, $\max(\mathcal{A}) = 5 = \min(\mathcal{P}_C)$.

Partie III : Partitions de chaînes

10°) Soit $i \in \mathbb{N}_{\ell}$.

On a $x_i < x_{i+1} < \cdots < x_\ell$, donc $\{x_i, \dots, x_\ell\}$ est une chaîne d'origine x_i de longueur $\ell - i + 1$. Ainsi, $f(x_i) \ge \ell - i + 1$.

Supposons que $f(x_i) > \ell - i + 1$. Posons $j = f(x_i)$. Alors, il existe une chaîne d'origine x_i et de longueur j, donc il existe $y_1, \ldots, y_j \in E$ tels que $y_1 < \cdots < y_j$ avec $y_1 = x_i$. Mézalor $x_1 < \cdots < x_i = y_1 < \cdots < y_j$, donc on dispose d'une chaîne de longueur i + j avec $i + j > i + (\ell - i + 1) = \ell + 1$, ce qui contredit la définition de $\ell = \max(\mathcal{C})$. Ainsi, on a montré que $f(x_i) = \ell - i + 1$.

- 11°) \diamond Pour tout $i \in \mathbb{N}_{\ell}$, d'après la question précédente, $x_{\ell-i+1} \in A_i$, donc $A_i \neq \emptyset$. \diamond Soit $x \in E$. Il existe une chaîne d'origine x et de longueur f(x). Par définition de ℓ , cette chaîne est de longueur inférieur à ℓ . Ainsi, $1 \leq f(x) \leq \ell$, or $x \in A_{f(x)}$ donc $x \in \bigcup A_i$. Ceci prouve que $\bigcup A_i = E$.
- \diamond Soit $i, j \in \mathbb{N}_{\ell}$ tels que $A_i \cap A_j \neq \emptyset$. Alors, il existe $x \in A_i \cap A_j$. Dans ce cas, i = f(x) = j. Ainsi, par contraposition, $i \neq j \Longrightarrow A_i \cap A_j = \emptyset$. En conclusion, (A_1, \ldots, A_{ℓ}) est une partition de E.
- 12°) \diamond Soit $i \in \mathbb{N}_{\ell}$. Soit $x, y \in A_i$. Raisonnons par l'absurde en supposant que y < x. $x \in A_i$, donc i = f(x). Ainsi, il existe $x_1, \ldots, x_i \in E$ tels que $x_1 < \cdots < x_i$ et $x_1 = x$. Alors, $y < x_1 < \cdots < x_i$, donc $f(y) \ge i + 1$. C'est faux car $y \in A_i$, donc f(y) = i. On en déduit donc que $\neg (y < x)$. De même, on montre que $\neg (x < y)$, donc, si $x \ne y$, alors $x \in Y$ ne sont pas comparables. Ceci prouve que A_i est une antichaîne.
- ♦ On vient de construire une partition constituée de ℓ antichaînes, donc $\min(\mathcal{P}_A) \leq \ell$, or $\ell = \max(\mathcal{C})$. Alors, d'après la question 7, $\min(\mathcal{P}_A) = \max(\mathcal{C})$.

13°) Soit $n \in \mathbb{N}$.

Notons R(n) l'assertion suivante : lorsque |E| = n, $\min(\mathcal{P}_A) = \max(\mathcal{C})$.

Supposons que n = 0 et que |E| = 0. Alors $E = \emptyset$. Dans ce cas, l'unique chaîne est \emptyset , donc $\max(\mathcal{C}) = 0$. De plus, l'unique partition d'antichaînes est la famille vide (P_1, \ldots, P_n) avec n = 0, donc on a aussi $\min(\mathcal{P}_A) = 0$, ce qui prouve R(0).

Supposons que $n \in \mathbb{N}$ et que R(k) est vraie pour tout $k \in \{0, ..., n\}$.

Soit E un ensemble fini de cardinal n+1. Notons A l'ensemble des éléments maximaux de E. D'après la question 1, appliquée avec l'ordre inverse \geq , A est non vide, donc $|E\setminus A|\leq n$. On peut ainsi appliquer l'hypothèse de récurrence à $E\setminus A$. Il existe donc $\ell\in\mathbb{N}$, qui représente le cardinal maximum des longueurs des chaînes de $E\setminus A$ et le nombre minimum de partition d'antichaînes de $E\setminus A$.

Il existe $x_1, \ldots, x_\ell \in E \setminus A$ tels que $x_1 < x_2 < \cdots < x_\ell$ et il existe une partition d'antichaînes de $E \setminus A$, notée (P_1, \ldots, P_ℓ) .

A est une antichaı̂ne de E, car si $x, y \in A$ avec $x \neq y$, on a $\neg(x < y)$, car x est maximal dans E et on a $\neg(y < x)$ car y est maximal dans E. Ainsi, x et y ne sont pas comparables.

Pour tout $i \in \mathbb{N}_{\ell}$, $P_i \subset E \setminus A$, donc $P_i \cap A = \emptyset$; on en déduit que (P_1, \dots, P_n, A) est une partition de E constituée de $\ell + 1$ antichaînes.

De plus $x_{\ell} \notin A$, donc x_{ℓ} n'est pas maximal dans E. Ainsi, il existe $x_{\ell+1} \in E$ tel que $x_{\ell} < x_{\ell+1}$. Alors $\{x_1, \ldots, x_{\ell+1}\}$ est une chaîne de longueur $\ell+1$.

On en déduit que $\min(\mathcal{P}_A) \leq \ell + 1 \leq \max(\mathcal{C})$ et la question 7 permet à nouveau de montrer que R(n+1) est vraie.

Le principe de récurrence conclut.

Partie IV : Cas particulier de $\mathcal{P}(\mathbb{N}_n)$

- **14°)** \diamond Posons $C = \{\mathbb{N}_k / 0 \le k \le n\}$. C est une chaîne, car pour tout $k \in \mathbb{N}_n$, $\mathbb{N}_{k-1} \subsetneq \mathbb{N}_k$ et |C| = n+1.
- \diamond Notons $A = \{F \subset \mathbb{N}_n \ / \ |F| = \lfloor \frac{n}{2} \rfloor \}$. D'après le rappel, $|A| = \binom{n}{\lfloor \frac{n}{2} \rfloor}$. Il reste à montrer que A est une antichaîne : Soit $B, C \in A$. Ainsi, |B| = |C|, donc d'après les rappels, $B \subset C \Longrightarrow B = C$ et $C \subset B \Longrightarrow B = C$. On en déduit que, lorsque $B \neq C$, B et C ne sont pas comparables. Ainsi, A est bien une antichaîne.
- 15°) D'après la question précédente, $\max(\mathcal{C}) \geq n+1$.

Pour tout $i \in \{0, ..., n\}$, notons $A_i = \{B \subset \mathbb{N}_n / |B| = i\}$.

Alors (A_0, A_1, \ldots, A_n) est une partition de E.

Comme lors de la question précédente, on montre que, pour tout $i \in \{0, ..., n\}$, A_i est une antichaîne, donc $(A_0, A_1, ..., A_n)$ est une partition constituée de n + 1 antichaînes de E. La question 7 permet de montrer que $\max(\mathcal{C}) = n + 1 = \min(\mathcal{P}_A)$.

- **16°**) \diamond Supposons que n=1. Alors $E=\{\emptyset,\{1\}\}$. Dans ce cas, E est déjà une chaîne symétrique (avec k=0), donc la liste (E) constituée du seul élément E est une partition de E constituée de chaînes symétriques.
- \diamond Supposons que n = 2. Alors $E = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.

Posons $C_1 = \{\emptyset, \{1\}, \{1,2\}\}$, qui est une chaîne symétrique, avec k = 0, et $C_2 = \{\{2\}\}$, qui est une chaîne symétrique, avec k = 1. Alors (C_1, C_2) est une partition de E constituée de chaînes symétriques.

- \diamond Supposons que n=3. On a vu en question 8.c, que si l'on pose $P_1=\{\emptyset,\{1\},\{1,2\},\{1,2,3\}\}\}$, $P_2=\{\{2\},\{2,3\}\}$ et $P_3=\{\{3\},\{1,3\}\}$, alors (P_1,P_2,P_3) est une partition de chaînes de E. Or P_1 est symétrique, avec k=0 et P_2,P_3 sont symétriques avec k=1.
- 17°) \diamond . Posons $C' = \{E_k, E_{k+1}, \dots, E_{n-1-k}, E_{n-1-k} \cup \{n\}\}$. En posant $E_{n-k} = E_{n-1-k} \cup \{n\}$, on a $C' = \{E_k, E_{k+1}, \dots, E_{n-k}\}$. k vérifie bien l'encadrement $k \leq n-k$, de plus, E_k, \dots, E_{n-k} sont des éléments de E tels que

 $E_k \subset E_{k+1} \subset \cdots \subset E_{n-k-1} \subset E_{n-1-k} \cup \{n\} = E_{n-k} \text{ et,}$

pour tout $i \in \{k, k+1, \dots, n-k\}, |E_i| = i$. Ainsi, C' est une chaîne symétrique de E.

 \diamond Posons $C'' = \{E_k \cup \{n\}, E_{k+1} \cup \{n\}, \dots, E_{n-2-k} \cup \{n\}\}.$

Pour tout $h \in \{k+1, ..., n-(k+1)\}$, posons $F_h = E_{h-1} \cup \{n\}$.

Ainsi, $C'' = \{F_{k+1}, F_{k+2}, \dots, F_{n-(k+1)}\}.$

Si k = n - 1 - k, c'est-à-dire si n est impair et si $k = \frac{n-1}{2}$, alors $C'' = \emptyset$.

Sinon, alors $k \le n - k - 2$, donc $k + 1 \le n - (k + 1)$.

De plus, $F_{k+1}, F_{k+2}, \dots, F_{n-(k+1)}$ sont des éléments de E et comme

 $E_k \subset E_{k+1} \subset \cdots \subset E_{n-k-2}$, on peut affirmer que $F_{k+1} \subset F_{k+2} \subset \cdots \subset F_{n-(k+1)}$. Enfin, pour tout $h \in \{k+1,\ldots,n-(k+1)\}$, $|F_h| = |E_{h-1}| + 1 = h$. Ceci démontre que C'' est une chaîne symétrique.

18°) Soit $h \in \{0, ..., n\}$. On note R(h) l'assertion selon laquelle il existe une partition de $\mathcal{P}(\mathbb{N}_h)$ constituée de chaînes symétriques.

Pour h = 0, $\mathbb{N}_0 = \emptyset$, donc $\mathcal{P}(\mathbb{N}_0) = \{\emptyset\}$. On vérifie alors que $C = \{E_0\}$ avec $E_0 = \emptyset$ est une chaîne symétrique (en prenant k = 0 = n dans la définition d'une chaîne symétrique). Donc (C) est une partition de $\mathcal{P}(\mathbb{N}_0)$ constituée de chaînes symétriques. On suppose que $1 \le h \le n$ et que R(h-1) est vraie.

Il existe donc une partition (C_1, \ldots, C_N) de $\mathcal{P}(\mathbb{N}_{h-1})$ constituée de chaînes symétriques. Pour tout $i \in \mathbb{N}_N$, il existe $k_i \in \mathbb{N}$ tel que $k_i \leq h-1-k_i$ et des parties de \mathbb{N}_{h-1} notées $E_{k_i,i},\ldots,E_{h-1-k_i,i}$ telles que $C_i = \{E_{k_i,i},\ldots,E_{h-1-k_i,i}\}, E_{k_i,i} \subset \cdots \subset E_{h-1-k_i,i}$ et, pour tout $j \in \{k_i,\ldots,h-1-k_i\}, |E_{j,i}|=j$.

Pour tout $i \in \mathbb{N}_N$, conformément aux notations de la question précédente, posons $C'_i = \{E_{k_i,i}, \ldots, E_{h-1-k_i,i}, E_{h-1-k_i,i} \cup \{h\}\}$ et $C''_i = \{E_{k_i,i} \cup \{h\}, \ldots, E_{h-2-k_i,i} \cup \{h\}\}$. D'après la question précédente, pour prouver R(h), il suffit de montrer que $\mathcal{P}(\mathbb{N}_h)$ est la réunion disjointe des C'_i et des C''_i lorsque i varie entre 1 et N. Il est possible que certains C''_i soient vides, mais il suffit de les retirer de la liste pour obtenir une partition. Ceci revient donc à montrer que, pour toute partie F de \mathbb{N}_h , il existe un unique $i \in \mathbb{N}_N$ tel que $F \in C'_i$ ou (exclusif) $F \in C''_i$. Soit donc $F \in \mathcal{P}(\mathbb{N}_h)$.

Premier cas : on suppose que $h \notin F$. Alors $F \subset \mathbb{N}_{h-1}$, donc d'après l'hypothèse de récurrence, il existe un unique $i \in \mathbb{N}_N$ tel que $F \subset C_i$. Alors $F \in C'_i$. De plus, pour tout $j \in \mathbb{N}_N$, $F \notin C''_i$ et lorsque $j \neq i$, $F \notin C'_i$.

Second cas: on suppose que $h \in F$. Posons $F' = F \setminus \{h\}$.

D'après l'hypothèse de récurrence, il existe un unique $i \in \mathbb{N}_N$ tel que $F' \in C_i$.

Lorsque $F' = \max(C_i)$, alors $F = F' \cup \{h\} = \max(C_i')$. En particulier, $F \in C_i'$. De plus, pour tout $j \in \mathbb{N}_N$, $F \notin C_i''$ et lorsque $j \neq i$, $F \notin C_i'$.

Lorsque $F' \neq \max(C_i)$, alors $F = F' \cup \{h\} \in C''_i$. De plus, pour tout $j \in \mathbb{N}_N$, $F \notin C''_j$ et lorsque $j \neq i$, $F \notin C''_i$.

On a donc prouvé R(h).

D'après le principe de récurrence, R(n) est vraie, ce qu'il fallait démontrer.

19°) \diamond Supposons que (P_1, \ldots, P_N) est une partition de E telle que P_1, \ldots, P_N sont des chaînes symétriques.

Posons $j = \lfloor \frac{n}{2} \rfloor$. Comme lors de la question 15, notons A_j l'ensemble des parties de \mathbb{N}_n dont le cardinal vaut j. On a vu en question 15 que A_j est une antichaîne. Alors, d'après la question 6, pour tout $F \in A_j$, il existe un unique $f(F) \in \mathbb{N}_N$ tel que $F \in P_{f(F)}$. Toujours d'après la question 6, f est une application injective de A_j dans \mathbb{N}_N . Montrons que f est également surjective.

Soit $i \in \mathbb{N}_N$. P_i est une chaîne symétrique de E, donc $P_i = \{E_k, E_{k+1}, \dots, E_{n-k}\}$ où $k \leq n - k$ et où E_k, \ldots, E_{n-k} vérifient les propriétés indiquées dans l'énoncé avant la question 16.

On a $2k \le n$, donc $k \le \lfloor \frac{n}{2} \rfloor$. De plus, $n-k \ge n-\lfloor \frac{n}{2} \rfloor \ge n-\frac{n}{2}=\frac{n}{2} \ge \lfloor \frac{n}{2} \rfloor$. Ainsi, $j=\lfloor \frac{n}{2}\rfloor$ est un entier compris entre k et n-k, or $|E_j|=j$. Ainsi, P_i possède partie Fde cardinal j. Alors $F \in A_j$ et f(F) = i, ce qui prouve que f est surjective.

Ainsi, f est une bijection de \mathcal{P}_j dans \mathbb{N}_N . On en déduit que $N = |\mathbb{N}_N| = |\mathcal{P}_j| = \binom{n}{\lfloor \frac{n}{2} \rfloor}$, d'après le rappel de l'énoncé au début de cette partie.

 \diamond D'après la question 18, il existe donc une partition de E constituée de $\binom{n}{\lfloor \frac{n}{n} \rfloor}$

chaînes. On en déduit que
$$\min(\mathcal{P}_C) \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$$
, mais d'après la question 14,
$$\max(\mathcal{A}) \geq \binom{n}{\lfloor \frac{n}{2} \rfloor}$$
. Alors, d'après la question 7,
$$\max(\mathcal{A}) = \binom{n}{\lfloor \frac{n}{2} \rfloor} = \min(\mathcal{P}_C)$$
.

 \diamond Soit $k \in \{0, \ldots, n\}$. Notons encore A_k l'ensemble des parties de \mathbb{N}_n qui sont de cardinal k. D'après la question 15, A_k est une antichaîne de E et d'après l'énoncé, $|A_k| = \binom{n}{k}$. On en déduit que $\binom{n}{k} \in \mathcal{A}$, donc $\binom{n}{k} \le \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

20°) Choisissons une antichaîne A de cardinal α . Par hypothèse, $C \cap A \neq \emptyset$, donc d'après la question 3, $C \cap A$ est un singleton.

En particulier, C est non vide, donc $|E \setminus C| < |E|$. Ainsi, le théorème de Dilworth est démontré pour $E \setminus C$.

 $A \setminus (C \cap A) = A \cap \overline{C \cap A} = A \cap (\overline{C} \cup \overline{A}) = (A \cap \overline{A}) \cup (A \cap \overline{C}) = A \cap \overline{C} = A \cap (E \setminus C), \text{ donc}$ $|A \cap (E \setminus C)| = \alpha - 1$, or $A \cap (E \setminus C)$ est une partie d'une antichaîne, donc c'est une antichaîne de $E \setminus C$. Ainsi, $E \setminus C$ possède au moins une antichaîne de cardinal $\alpha - 1$. De plus, si $E \setminus C$ possédait une antichaîne de cardinal α , ce serait une antichaîne de E de cardinal α qui ne rencontre pas C, ce qui est contraire à l'hypothèse de l'énoncé. Ainsi, dans $E \setminus C$, le maximum des cardinaux des antichaînes est égal à $\alpha - 1$. Il existe donc une partition $(C_1, \ldots, C_{\alpha-1})$ de $E \setminus C$ constituée de chaînes. Alors $(C_1, \ldots, C_{\alpha-1}, C)$ est une partition de E constituée de α chaînes de E. On en déduit que $\min(\mathcal{P}_C) \leq \alpha = \max(\mathcal{A})$, puis d'après la question 7, que $\min(\mathcal{P}_C) = \max(\mathcal{A})$.

- **21°)** \diamond Soit $x \in E$. Supposons que $x \notin (A_+ \cup A_-)$. Alors, pour tout $a \in A$, on a $\neg (a \leq x)$ et $\neg (a \geq x)$, donc x n'est comparable avec aucun élément de A. Alors $A \cup \{x\}$ est une antichaîne, de cardinal $\alpha + 1$, ce qui est impossible par définition de α . Ainsi, $x \in (A_+ \cup A_-)$, ce qui montre que $A_+ \cup A_- = E$.
- \diamond Si $a \in A$, $a \leq a$ donc $a \in A_+ \cap A_-$.

Réciproquement, soit $b \in A_+ \cap A_-$. Il existe $a, a' \in A$ tels que $a \le b \le a'$. Alors a et a' sont comparables, mais A est une antichaîne, donc a = a', puis a = b = a'. Ainsi, $b \in A$. On a bien montré que $A_+ \cap A_- = A$.

- **22°**) Supposons que $\min(C) \in A_+$. Il existe $a \in A$ tel que $a \leq \min(C)$. $a \neq \min(C)$, car $C \cap A = \emptyset$, donc $a < \min(C)$. Alors $\{a\} \cup C$ est une chaîne, de cardinal $|C| + 1 = \max(C) + 1$, ce qui est impossible par définition de C. Ainsi, $\min(C) \notin A_+$, ce qui prouve que $A_+ \neq E$. De même, on montre que $\max(C) \notin A_-$, ce qui prouve que $A_- \neq E$.
- 23°) \diamond Ainsi, $|A_{-}| < |E|$ et $|A_{+}| < |E|$, donc le théorème de Dilworth est démontré pour A_{-} et pour A_{+} .
- \diamond $A \subset A_-$, donc A est une antichaîne de A_- . De plus, toute antichaîne de A_- est une antichaîne de E, donc il n'existe pas dans A_- d'antichaîne de cardinal strictement supérieur à α . Ainsi, α est le cardinal maximal des antichaînes de A_- . De même, α est le cardinal maximal des antichaînes de A_+ . Il existe donc une partition $(C'_1, \ldots, C'_{\alpha})$ de A_- constituée de chaînes et une partition $(C''_1, \ldots, C''_{\alpha})$ de A_+ constituée de chaînes.
- \diamond A est une antichaı̂ne de A_- et $(C'_1, \ldots, C'_{\alpha})$ est une partition de chaı̂nes de A_- , donc d'après la question 6, pour tout $a \in A$, il existe un unique $f(a) \in \mathbb{N}_{\alpha}$ tel que $a \in C'_{f(a)}$. Alors, toujours d'après la question 6, f est une application injective de A dans \mathbb{N}_{α} . D'après les rappels au début de l'énoncé, comme $|A| = \alpha$, f est une bijection de A dans \mathbb{N}_{α} .
- \diamond Pour tout $i \in \mathbb{N}_{\alpha}$, posons $a_i = f^{-1}(i)$. Ainsi, $a_i \in A \cap C'_i$.
- Soit $i \in \mathbb{N}_{\alpha}$. Posons $x = \max(C'_i)$. Alors $x \in A_-$, donc il existe $a \in A$ tel que $x \leq a$. Or $a_i \in C'_i$, donc $a_i \leq x \leq a$, mais a et a_i sont deux éléments de l'antichaîne A, donc $a_i = a$, puis $x = a_i$. Ainsi, pour tout $i \in \mathbb{N}_{\alpha}$, $a_i = \max(C_i)$.

En raisonnant de même dans A_+ , on montre que, quitte à modifier l'ordre de $C_1'', \ldots, C_{\alpha}''$, pour tout $i \in \mathbb{N}_{\alpha}$, $a_i = \min(C_i'')$.

- \diamond Pour tout $i \in \mathbb{N}_{\alpha}$, posons $C_i = C'_i \cup C''_i$.
- Soit $i \in \mathbb{N}_{\alpha}$. C_i est une chaîne car, si $x, y \in C_i$, lorsque $x, y \in C'_i$ ou $x, y \in C''_i$, x et y sont comparables car C'_i et C''_i sont des chaînes, et lorsque $x \in C'_i$ et $y \in C''_i$, on a $x \leq a_i \leq y$.

Soit $x \in E$. Si $x \in A$, il existe un unique $i \in \mathbb{N}_{\alpha}$ tel que $x = a_i$, donc il existe un unique $i \in \mathbb{N}_{\alpha}$ tel que $x \in C_i$.

Si $x \in A_+ \setminus A$, il existe un unique $i \in \mathbb{N}_{\alpha}$ tel que $x \in C_i''$, car $(C_1'', \ldots, C_{\alpha}'')$ est une partition de A_+ , donc il existe un unique $i \in \mathbb{N}_{\alpha}$ tel que $x \in C_i$.

On raisonne de même lorsque $x \in A_- \setminus A$.

Ceci démontre que $(C_1, \ldots, C_{\alpha})$ est une partition de E et elle est constituée de α chaînes. On en déduit alors que $\max(A) = \min(\mathcal{P}_C)$.

 \diamond Ainsi, en tenant compte de la question 20, pour tout $n \in \mathbb{N}^*$, le théorème de Dilworth est démontré lorsque |E| = n, si l'on suppose qu'il est démontré pour tout ensemble ordonné de cardinal inférieur ou égal à n-1. Ainsi, d'après le principe de récurrence forte, il reste à montrer le théorème de Dilworth lorsque |E| = 0, c'est-à-dire lorsque $E = \emptyset$, mais dans ce cas, $\mathcal{A} = \{0\} = \mathcal{P}_C$, donc $\max(\mathcal{A}) = 0 = \min(\mathcal{P}_C)$, ce qui conclut.