DM 12 : ordinaux et suites de Goodstein.

Il s'agit d'un sujet supplémentaire pour votre travail personnel.

Il n'est pas à rendre.

Un corrigé sera fourni jeudi 6 novembre.

1 Suites de Goodstein

Décomposition d'un entier en base b: On rappelle que, si $b \in \mathbb{N}$ avec $b \ge 2$, tout entier naturel n non nul se décompose de manière unique sous la forme

$$n = a_h b^h + a_{h-1} b^{h-1} + \dots + a_0 = \sum_{i=0}^h a_i b^i,$$

où $h \in \mathbb{N}$ et $a_h \neq 0$ et où, pour tout $i \in \{0, \dots, h\}, a_i \in \{0, \dots, b-1\}.$

Pour h = -1, la somme vide $\sum_{i=0}^{n} a_i b^i$ est nulle. Elle constitue la décomposition de 0 en base b.

1°) Décomposer 144 en base 3.

La **décomposition héréditaire** de l'entier n en base b consiste à n'écrire n qu'à l'aide des entiers $0, \ldots, b$: on écrit d'abord la décomposition de l'entier n en base b:

$$n = \sum_{i=0}^{h} a_i b^i$$
, puis, si $h > b$, pour tout $i > b$, on remplace dans cette égalité i par sa décomposition en base b et on itère le procédé.

Par exemple, 35 s'écrit en base $2:35=2^5+2+1$, or $5=2^2+1$, donc la décomposition héréditaire de 35 en base 2 est $35=2^{(2^2+1)}+2^1+1$.

La décomposition héréditaire de $2^{35} + 35$ en base 2 vaut $2^{[2^{(2^2+1)}+2^1+1]} + 2^{(2^2+1)} + 2^1 + 1$. Formellement, si l'on note $d_b(n)$ la décomposition de l'entier n en base b, on définit la décomposition héréditaire $dh_b(n)$ en convenant que :

— pour tout
$$n < b^{b+1}$$
, $dh_b(n) = d_b(n)$;

- lorsque $n \geq b^{b+1}$, si $d_b(n)$ est l'écriture de n sous la forme " $\sum_{i=1}^{n} a_i b^i$ ", alors $\mathrm{dh}_b(n)$ est l'écriture de n sous la forme " $\sum_{i=1}^h a_i b^{dh_b(i)}$ ".
- 2°) Donner la décomposition héréditaire en base 3 de $3^{144} + 144$.
- Montrer que, pour tout $h \in \mathbb{N}$, $2^h > h$. 3°)
- 4°) Montrer que $dh_b(n)$ est correctement défini pour tout $b, n \in \mathbb{N}$ avec $b \geq 2$.

Soit $q, r \in \mathbb{N}$ tels que $2 \le q < r$.

On note $f_{q,r}$ l'application de \mathbb{N} dans \mathbb{N} telle que, pour tout $n \in \mathbb{N}$, $f_{q,r}(n)$ est l'entier obtenu à partir de n en remplaçant formellement q par r dans la décomposition héréditaire de n en base q, sans changer les autres nombres.

Par exemple, $f_{2,3}(35) = 3^{(3^3+1)} + 3^1 + 1$ et $f_{2,3}(2^{35} + 35) = 3^{[3^{(3^3+1)} + 3^1 + 1]} + 3^{(3^3+1)} + 3^1 + 1$.

- Montrer qu'on peut définir $f_{q,r}$ en convenant que :
 - pour tout $i \in \{0, ..., q-1\}, f_{q,r}(i) = i;$
 - pour tout $n \in \mathbb{N}^*$, si $d_q(n)$ est l'écriture de n sous la forme $\sum_{i=1}^{\kappa} a_i \ q^i$, avec $k \in \mathbb{N}$, $a_k \neq 0$ et pour tout $i \in \{0, \dots, k\}, a_i \in \{0, \dots, q-1\},$ alors $f_{q,r}(n) = \sum_{i=0}^{k} a_i \ r^{f_{q,r}(i)}$.

Soit $p \in \mathbb{N}$ et $q \in \mathbb{N}$ avec $q \geq 2$.

On définit la suite de Goodstein $(g_n^{p,q})_{n\in\mathbb{N}}$ de la manière suivante :

- $\begin{array}{ll} & g_0^{p,q} = p; \\ & g_{n+1}^{p,q} = 0 \text{ si } g_n^{p,q} = 0; \\ & \text{ si } g_n^{p,q} \neq 0, \text{ alors } g_{n+1}^{p,q} = f_{q+n,q+n+1}(g_n^{p,q}) 1. \end{array}$

Lorqu'il n'y aura pas d'ambiguïté sur les valeurs de p et q, on écrira g_n au lieu de $g_n^{p,q}$.

- Calculer la suite $(g_n^{p,q})_{n\in\mathbb{N}}$ lorsque q=2 et p=3. 6°)
- Soit $b \in \mathbb{N}$ avec $b \ge 2$ et $h \in \mathbb{N}$. Montrer que $\sum_{i=1}^{n} (b-1)b^i = b^{h+1} 1$. **7**°)

Jusqu'à la fin de cette partie, on choisit q=2 et p=4. On notera g_n au lieu de $g_n^{4,2}$.

- Déterminer les plus petits entiers h et k tels que $g_h = 2.(11)^2 + 11$ et $g_k = 2 \times 23^2$. 8°)
- Calculer g_n lorsque $n = 3.2^{27} 3$. 9°)
- 10°) Déterminer le plus petit entier k tel que $g_k = 0$.

L'objectif de la suite de ce problème est de montrer le

Théorème de Goodstein (1944):

pour tout $p,q\in\mathbb{N}$ avec $q\geq 2$, la suite $(g_n^{p,q})_{n\in\mathbb{N}}$ est nulle à partir d'un certain rang.

2 Ensembles bien ordonnés

11°) Soit E un ensemble et R une relation binaire sur E.

On dit que R est un ordre strict sur E si et seulement si :

- R est antiréflexive, c'est-à-dire que, pour tout $x \in E$, $\neg(x R x)$;
- R est transitive.

On note r la relation binaire sur E définie par : $\forall x, y \in E$, $[x r y \iff (x R y) \lor (x = y)]$. Si R est un ordre strict, montrer que r est une relation d'ordre. On dit que r est la relation d'ordre associée à l'ordre strict R.

- 12°) Réciproquement, si r est une relation d'ordre quelconque sur E, montrer qu'il existe un unique ordre strict auquel elle est associée.
- 13°) Soit "<" une relation binaire sur un ensemble E.

On dit que (E, <) est bien ordonné si et seulement si "<" est un ordre strict sur E et si, pour la relation d'ordre associée à < (que l'on notera \leq), toute partie non vide de E possède un minimum.

Montrer que dans ce cas, l'ordre \leq est total et qu'il n'existe pas de suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E strictement décroissante pour \leq .

- 14°) Soit (A,<) et (B,<) deux ensembles bien ordonnés. On pose $A+B=[A\times\{0\}]\cup [B\times\{1\}]$ et on convient que, pour tout $(c,i),(d,j)\in A+B,\,(c,i)<(d,j)\Longleftrightarrow [i< j]\vee [(i=j)\wedge (c< d)].$ Montrer que (A+B,<) est bien ordonné.
- **15°)** Soit (A, <) et (B, <) deux ensembles bien ordonnés. Si $(a, b), (c, d) \in A \times B$, on convient que $(a, b) < (c, d) \iff [b < d] \lor [(b = d) \land (a < c)]$. Montrer que $A \times B$ est bien ordonné par "<".
- 16°) Soit (A, <) et (B, <) deux ensembles bien ordonnés. On suppose que A est non vide et on note 0_A son minimum. On note $A^{(B)}$ l'ensemble des familles $(a_b)_{b\in B}$ d'éléments de A indexées par B telles que $\{b \in B \mid a_b \neq 0_A\}$ est de cardinal fini. On convient que, pour tout $(a_b)_{b\in B}, (a'_b)_{b\in B} \in A^{(B)}$,

$$(a_b)_{b \in B} < (a_b')_{b \in B} \iff \exists b_0 \in B, \ [a_{b_0} < a_{b_0}'] \land [\forall b \in B, \ b_0 < b \Longrightarrow a_b = a_b'].$$

Montrer qu'on définit ainsi un ordre strict "<" sur $A^{(B)}$. On admettra que $A^{(B)}$ est bien ordonné par "<".

17°) On suppose que (E, <) est bien ordonné. On considère un prédicat P(x) défini pour tout $x \in E$ et tel que :

$$\forall x \in E, \ \left([\forall y \in E, \ y < x \Longrightarrow P(y)] \Longrightarrow P(x) \right).$$

Montrer que P(x) est vrai pour tout $x \in E$.

18°) On suppose que (E, <) est bien ordonné.

Si S est une partie de E, on dit que S est un segment initial de E si et seulement si $\forall x \in S, \ \forall y \in E, \ [y < x \Longrightarrow y \in S].$

Pour tout $x_0 \in E$, on note $S_{x_0} = \{x \in E \mid x < x_0\}$.

Montrer que les seuls segments initiaux de E sont E et les S_{x_0} avec $x_0 \in E$.

On rappelle qu'une application f d'un ensemble E dans un ensemble F est une bijection si et seulement si pour tout $y \in F$, il existe un unique $x_y \in E$ tel que $f(x_y) = y$ et que de plus, en posant $f^{-1}(y) = x_y$ pour tout $y \in F$, on définit une bijection f^{-1} de F dans E telle que, pour tout $x \in E$ et $y \in F$, $f \circ f^{-1}(y) = y$ et $f^{-1} \circ f(x) = x$.

19°) Soient (E, <) et (F, <) deux ensembles bien ordonnés. Montrer qu'il existe au plus une bijection de E dans F qui est strictement croissante, c'est-à-dire telle que, pour tout $x, y \in E$, $x < y \Longrightarrow f(x) < f(y)$.

3 Les ordinaux

On se place dans le cadre de la théorie des ensembles de Zermelo-Fraenkel. En particulier, on ne suppose pas l'axiome de fondation.

Soit E un ensemble. Alors la relation d'appartenance est une relation binaire sur E, car pour tout $x, y \in E$, l'assertion " $x \in y$ " est vraie ou fausse.

On dira que

E est transitif si et seulement si pour tout $x \in E$ et pour tout $y \in x, y \in E$.

On dira que

E est un ordinal si et seulement si E est transitif et si (E, \in) est bien ordonné.

Lorsque E est un ordinal, la relation d'appartenance entre deux éléments de E est notée indifféremment " \in " ou "<".

- **20°)** Montrer que \emptyset est un ordinal.
- **21**°) Montrer que $\{\emptyset, \{\emptyset\}\}$ est un ordinal.

Pour les questions 22 à 27 incluse, on fixe un ordinal α .

- **22°**) Si $\alpha \neq \emptyset$, en utilisant min(α), montrer que $\emptyset \in \alpha$.
- **23°)** Montrer que $\alpha \notin \alpha$.
- 24°) Si β est un élément de α , montrer que β est aussi un ordinal.
- **25°)** Avec les notations de la question 18, montrer que pour tout $\beta \in \alpha$, $S_{\beta} = \beta$.
- **26°)** Soit β un ordinal. Montrer que $\beta \subset \alpha \iff (\beta = \alpha) \vee (\beta \in \alpha)$.
- **27°)** On pose $\alpha^+ = \alpha \cup \{\alpha\}$. Montrer que α^+ est un ordinal.

Montrer que si β est un ordinal tel que $\alpha \in \beta$, alors $\alpha^+ \subset \beta$.

28°) Soit α et β deux ordinaux.

Montrer qu'on est dans l'un des trois cas suivants : $\alpha \in \beta$, $\beta \in \alpha$ ou bien $\alpha = \beta$.

- **29°)** Si A est un ensemble d'ordinaux, montrer que (A, \in) est bien ordonné.
- 30°) Si A est un ensemble d'ordinaux, montrer que $\bigcup_{\alpha \in A} \alpha$ est un ordinal.

4 Le théorème de Goodstein

En posant $\overline{0} = \emptyset$ et $\overline{n+1} = \overline{n}^+$, on définit par récurrence les ordinaux \overline{n} pour tout $n \in \mathbb{N}$. On admettra que l'axiome de l'infini permet de construire rigoureusement l'ensemble suivant : $\omega = \bigcup_{n \in \mathbb{N}} \overline{n}$. ω est un ordinal.

On admet que si (X, <) est bien ordonné, il existe un unique ordinal α et une unique bijection strictement croissante de (X, <) dans (α, \in) . On dira dans ce cas que X et α sont isomorphes.

Soit α et β deux ordinaux. La question 14 permet de construire un ordre < tel que $(\alpha + \beta, <)$ est bien ordonné. Cet ensemble bien ordonné est isomorphe à un unique ordinal, que par abus de notation, on notera encore $\alpha + \beta$.

De même on note $\alpha\beta$ et α^{β} les uniques ordinaux isomorphes aux ensembles bien ordonnés $(\alpha \times \beta, <)$ et $(\alpha^{(\beta)}, <)$ construits aux questions 15 et 16.

Lorsque $\alpha = \overline{0}$, on convient que $\overline{0}^{\beta} = \overline{0}$ si $\beta \neq \overline{0}$ et que $\overline{0}^{\overline{0}} = \overline{1}$.

On admet que l'addition et la multiplication entre ordinaux sont associatives mais non commutatives.

Soit $q \in \mathbb{N}$ avec $q \geq 2$.

On définit la suite d'ordinaux $(f_{q,\omega}(n))_{n\in\mathbb{N}}$ en convenant que :

- pour tout $i \in \{0, ..., q-1\}, f_{q,\omega}(i) = \bar{i};$
- pour tout $n \in \mathbb{N}^*$, si n s'écrit sous la forme $\sum_{i=0}^k a_i \ q^i$, avec $k \in \mathbb{N}$, $a_k \neq 0$ et pour

tout
$$i \in \{0, \dots, k\}$$
, $a_i \in \{0, \dots, q-1\}$,
alors $f_{q,\omega}(n) = \omega^{f_{q,\omega}(k)} \overline{a_k} + \omega^{f_{q,\omega}(k-1)} \overline{a_{k-1}} + \dots + \omega^{\overline{0}} \overline{a_0}$.

On fixe $p, q \in \mathbb{N}$ avec $q \geq 2$.

On considère à nouveau la suite $(g_n^{p,q})_{n\in\mathbb{N}}$ définie en question 5, et on écrira g_n au lieu de $g_n^{p,q}$. Pour tout $n\in\mathbb{N}$, on pose $\alpha_n=f_{q+n,\omega}(g_n)$.

31°) Si
$$g_n \neq 0$$
, montrer que $\alpha_n = f_{q+n+1,\omega}(g_{n+1}+1)$.

On admet les propriétés suivantes, où la relation d'appartenance est notée "<" et où α, β, γ sont trois ordinaux.

- 1. $\alpha + \overline{1} = \alpha^+$;
- 2. $\beta < \gamma \Longrightarrow \alpha + \beta < \alpha + \gamma$;
- 3. si $\alpha \neq \overline{0}$, $\beta < \gamma \Longrightarrow \alpha \beta < \alpha \gamma$;
- 4. si $\alpha > \overline{1}$, $\beta < \gamma \Longrightarrow \alpha^{\beta} < \alpha^{\gamma}$;

- 5. $\alpha(\beta + \gamma) = (\alpha\beta) + (\alpha\gamma);$
- 6. $\alpha^{\overline{0}} = \overline{1} \text{ et } \alpha^{\overline{1}} = \alpha;$
- 7. $\alpha^{\beta+\gamma} = \alpha^{\beta}\alpha^{\gamma}$.
- 8. $\overline{1} \times \alpha = \alpha \times \overline{1} = \alpha$.
- **32°)** On fixe $n \in \mathbb{N}$ avec $n \ge 2$.

Montrer que la suite $(f_{n,\omega}(x))_{x\in\mathbb{N}}$ est une suite strictement croissante d'ordinaux.

33°) Démontrer le théorème de Goodstein.