Feuille d'exercices 6: Les réels.

Exercice 6.1: (niveau 1)

Résoudre dans \mathbb{R} l'équation $\lfloor 2x+1 \rfloor = \lfloor x+4 \rfloor$.

Exercice 6.2 : (niveau 1) Montrer que $\frac{\ln 2 + \ln 3}{\ln 5 + \ln 7}$ est irrationnel.

Exercice 6.3: (niveau 1)

- 1°) Démontrer que la somme d'un rationnel et d'un irrationnel est un irrationnel.
- 2°) Démontrer que la racine carrée d'un irrationnel strictement positif est un irrationnel.
- 3°) Soient r, s deux rationnels positifs tels que \sqrt{r} et \sqrt{s} sont irrationnels. Démontrer que $\sqrt{r} + \sqrt{s}$ est irrationnel.

Exercice 6.4: (niveau 1)

Soit f une application continue de \mathbb{R} dans \mathbb{R} telle que $f|_{\mathbb{Q}}$ est croissante.

Montrer que f est croissante.

Exercice 6.5: (niveau 1)

On appelle nombre dyadique tout nombre rationnel de la forme $\frac{m}{2^k}$ où $m \in \mathbb{Z}$ et $k \in \mathbb{N}$. Montrer que l'ensemble des nombres dyadiques est dense dans \mathbb{R}

Exercice 6.6: (niveau 2)

Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. Montrer que $\lfloor nx \rfloor = \sum_{k=0}^{n-1} \lfloor x + \frac{k}{n} \rfloor$.

Exercice 6.7: (niveau 2)

Soit $n \in \mathbb{N}$. Montrer que $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor = \lfloor \sqrt{4n+1} \rfloor = \lfloor \sqrt{4n+2} \rfloor = \lfloor \sqrt{4n+3} \rfloor$.

Exercice 6.8: (niveau 2)

Soit $n \in \mathbb{N}^*$. On pose $F_n = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2}$. F_n peut-il être un nombre décimal?

Exercice 6.9: (niveau 2)

1°) Soit $n \in \mathbb{N}^*$. Soit $(I_k)_{0 \le k \le n}$ une famille d'intervalles non vides telle que, pour tout $k \in \mathbb{N}_n$, il existe $h \in \mathbb{N}$ tel que h < k et $I_k \cap I_h \ne \emptyset$.

Montrer que $\bigcup_{0 \le k \le n} I_k$ est un intervalle.

2°) Soit $(I_k)_{k\in\mathbb{N}}$ une famille d'intervalles non vides telle que, pour tout $k\in\mathbb{N}^*$, il existe $h\in\mathbb{N}$ tel que h< k et $I_k\cap I_h\neq\emptyset$.

Montrer que $\bigcup_{k\in\mathbb{N}} I_k$ est un intervalle.

 3°) La propriété précédente est-elle encore vraie si l'on remplace $\mathbb N$ par $\mathbb Z$?

Exercice 6.10: (niveau 2)

Montrer que $\{\sqrt{m} - \sqrt{n}/(n, m) \in \mathbb{N}^2\}$ est dense dans \mathbb{R} .

Exercice 6.11: (niveau 2)

1°) Montrer que, pour tout $n \in \mathbb{N}$, il existe $a_n, b_n \in \mathbb{N}$ tels que $(3+2\sqrt{2})^n = a_n + b_n \sqrt{2}$.

2°) Montrer que $\{(x,y) \in \mathbb{N}^2 / x^2 - 2y^2 = 1\}$ est infini.

Exercice 6.12: (niveau 2)

Calculer la borne supérieure de $E = \{\sqrt{k} - \lfloor \sqrt{k} \rfloor / k \in \mathbb{N}^* \}.$

Exercice 6.13: (niveau 2)

Soit $x \in]0, 2[$. On note $A = \{ |nx| / n \in \mathbb{N} \}$.

Montrer que A contient une infinité de puissances de 2.

Exercice 6.14: (niveau 3)

Soit A une partie non majorée de \mathbb{R}_+ . Montrer que $B = \bigcup_{n \in \mathbb{N}^*} \frac{1}{n} A$ est dense dans \mathbb{R}_+ .

Exercices supplémentaires

Exercice 6.15: (niveau 1)

Résoudre dans \mathbb{R} l'équation $|\sqrt{x^2+1}|=2$.

Exercice 6.16: (niveau 1)

Démontrer que $\forall n \in \mathbb{N}, \ \exists (a_n, b_n) \in \mathbb{N}^2, \ (1 + \sqrt{5})^n = a_n + b_n \sqrt{5}.$

Exercice 6.17: (niveau 1)

Démontrer que lorsqu'un nombre réel peut être écrit sous la forme $a+b\sqrt{2}$ avec $a,b\in\mathbb{Z}$, alors cette écriture est unique.

Exercice 6.18: (niveau 1)

Déterminer les nombres décimaux strictement positifs dont l'inverse est aussi un nombre décimal.

Exercice 6.19: (niveau 1)

Montrer que $\{q^2/q \in \mathbb{Q}\}$ est dense dans \mathbb{R}_+ .

Exercice 6.20: (niveau 1)

Soit f une application de \mathbb{R} dans \mathbb{R} que l'on suppose T-périodique, avec T>0.

On suppose également qu'il existe $\ell \in \mathbb{R}$ tel que $f(x) \xrightarrow[r \to +\infty]{} \ell$.

Montrer que f est constante.

Exercice 6.21: (niveau 2)

Montrer que $\sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}} = 4$.

Exercice 6.22: (niveau 2)

Soit $a \in \mathbb{R}_+^*$. Déterminer si elle existe la limite de la suite $(E(a^n)^{\frac{1}{n}})_{n \in \mathbb{N}^*}$, où E désigne la partie entière.

Exercice 6.23: (niveau 2)

Démontrer qu'il existe deux irrationnels a et b tels que a^b est un rationnel.

Exercice 6.24: (niveau 2)

On fixe k dans \mathbb{N}^* . Lorsque $n \in \mathbb{N}$ avec $n \geq k$, on note u_n le chiffre des unités de $\binom{n}{k}$

en base 10. Montrer que le réel $x=0,u_ku_{k+1}u_{k+2}\cdots$ est un rationnel (formellement,

$$x = \sum_{n=1}^{+\infty} \frac{u_{k+n-1}}{10^n}).$$

Exercice 6.25: (niveau 2)

Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, montrer que $\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor$.

Exercice 6.26: (niveau 3)

Montrer que $\{\cos(\ln(n)) / n \in \mathbb{N} \text{ avec } n \geq 2\}$ est dense dans [-1, 1].

Exercice 6.27: (niveau 3)

Soit $n \in \mathbb{N}^*$ et $(I_j)_{1 \leq j \leq n}$ une famille finie de n intervalles telle que $\bigcup_{1 \leq j \leq n} I_j$ est un

intervalle. Montrer qu'il existe $\ell \in \mathbb{N}_n$ tel que $\bigcup_{\substack{1 \leq j \leq n \\ j \neq \ell}} I_j$ est un intervalle. Cette propriété est-elle encore vraie avec une famille infinie d'intervalles?

4