DM 13 : un corrigé

Problème 1 : Éléments sup-irréductibles et parties sup-génératrices

Partie I : Éléments sup-irréductibles

 $\mathbf{1}^{\circ}$) \diamond Soit M un majorant de $\bigcup_{i \in I} A_i$.

Soit $j \in I : A_j$ est inclus dans $\bigcup_{i \in I} A_i$, donc M majore A_j , or $\sup(A_j)$ est le plus petit des

majorants de A_j , donc $M \ge \sup(A_j)$. Ainsi M est un majorant de $\{\sup(A_i) / i \in I\}$. Réciproquement, soit M un majorant de $\{\sup(A_i) / i \in I\}$.

Soit
$$x \in \bigcup_{i \in I} A_i$$
. Il existe $i \in I$ tel que $x \in A_i$.

Réciproquement, soit M un majorate Soit $x \in \bigcup_{i \in I} A_i$. Il existe $i \in I$ tel que $x \in A_i$.

On a alors : $x \leq \sup(A_i) \leq M$. Ainsi, M est bien un majorant de $\bigcup_{i \in I} A_i$.

Les ensembles $\bigcup_{i \in I} A_i$ et $\{\sup(A_i) \ / \ i \in I\}$ ont donc les mêmes majorants.

- $\diamond~$ Supposons que $\bigcup A_i$ possède une borne supérieure, notée s. Alors s est le minimum
- de l'ensemble des majorants de $\bigcup_{i \in I} A_i$, donc d'après le point précédent, c'est le minimum

de l'ensemble des majorants de $\{\sup(A_i) \mid i \in I\}$. Ainsi, $\{\sup(A_i) \mid i \in I\}$ possède une borne supérieure égale à s. La réciproque est analogue, donc la question est prouvée.

- **2°)** Soit $x \in \mathbb{R}$. On sait que $x = \sup(]-\infty, x[)$: en effet, x majore $]-\infty, x[$ et si $y \in]-\infty, x[$ alors il existe $z \in \mathbb{R}$ tel que y < z < x, donc y ne majore pas $]-\infty, x[$. Ainsi, x est bien le plus petit des majorants de $]-\infty,x[$. Donc $x=\sup(]-\infty,x[),$ cependant $x \notin]-\infty, x[$, donc x n'est pas sup-irréductible. On a montré qu'aucun réel n'est sup-irréductible.
- 3°) Soit $n \in \mathbb{N}$.
- \diamond Supposons d'abord que n=1. Pour tout $k \in \mathbb{N}$, $1 \mid k$, donc $1=\min(\mathbb{N})$. Posons $X = \emptyset$. L'ensemble des majorants de X est N, donc $1 = \sup(X)$, mais $1 \notin X$. Ceci prouve que 1 n'est pas sup-irréductible.

- ♦ Supposons que n = 0. Pour tout $k \in \mathbb{N}$, $k \mid 0$ car $0 = 0 \times k$, donc $0 = \max(\mathbb{N})$. Soit $k \in \mathbb{N}^*$. Si k+1 divise k, alors il existe $h \in \mathbb{N}$ tel que k = h(k+1). Nécessairement, $h \neq 0$, donc, pour l'ordre naturel de \mathbb{N} , $k \geq k+1$, ce qui est faux. Ainsi, k n'est pas un majorant de \mathbb{N}^* . L'ensemble des majorants de \mathbb{N}^* est donc égal à $\{0\}$. Alors $0 = \sup(\mathbb{N}^*)$ mais $0 \notin \mathbb{N}^*$, donc 0 n'est pas sup-irréductible.
- \diamond On peut maintenant supposer que $n \in \mathbb{N} \setminus \{0, 1\}$.

Supposons d'abord que n est une puissance d'un nombre premier : il existe $p \in \mathbb{P}$ et $k \in \mathbb{N}^*$ tel que $n = p^k$.

Soit $X \subset \mathbb{N}$ telle X possède un sup avec $n = \sup(X)$.

Soit $x \in X$. x divise $n = p^k$, donc il existe $h \in \{0, ..., k\}$ tel que $x = p^h$.

Si $n \notin X$, alors $X \subset \{p^h \mid h \in \{0, \dots, k-1\}\}$ et p^{k-1} majore X. C'est faux car p^{k-1} divise p^k et $p^{k-1} \neq p^k$, donc n ne serait pas le plus petit majorant de X. Ainsi, $n \in X$, pour toute partie X telle que $n = \sup(X)$; n est sup-irréductible.

 \diamond Supposons enfin que n n'est pas une puissance d'un nombre premier. Sa décomposition primaire est alors de la forme $n = \prod_{1 \le i \le k} p_i^{v_i}$, où $k \ge 2, p_1, \dots, p_k$ sont des nombres pre-

miers deux à deux distincts et où v_1, \ldots, v_k sont des entiers non nuls.

Posons
$$a = p_1^{v_1}$$
 et $b = \prod_{2 \le i \le k} p_i^{v_i}$. Notons $X = \{a, b\}$.

Clairement, n majore \bar{X} .

Soit c un majorant de X. Alors a et b divisent c, or a et b sont premiers entre eux, donc n = ab divise c. n est donc le plus petit des majorants de X. Alors $n = \sup(X)$, mais $n \notin X$, donc n n'est pas sup-irréductible.

En conclusion, les sup-irréductibles de \mathbb{N} pour la relation de divisibilité sont les puissances des nombres premiers, différentes de 1.

4°) Notons $A = \{a \in E \ / \ a < x\}.$

y est un élément maximal de A si et seulement si $y \in A$ et si, pour tout $z \in A$, $\neg(y < z)$, donc si et seulement si y < x et si $\{z \in A \mid y < z\}$ est vide, c'est-à-dire si et seulement si $y \in E^-x$, ce qui conclut.

 5°) Soit X une partie non vide de E.

Supposons que X ne possède aucun élément maximal.

X est non vide, donc il existe $x_0 \in X$.

 x_0 n'est pas maximal dans X, donc il existe $x_1 \in X$ tel que $x_0 < x_1$.

Supposons construits $x_0, \ldots, x_n \in X$ tels que $x_0 < \cdots < x_n$, où $n \ge 1$.

 x_n n'est pas maximal dans X, donc il existe $x_{n+1} \in X$ tel que $x_n < x_{n+1}$.

Par récurrence, on a ainsi construit une suite $(x_n)_{n \in \mathbb{N}}$ d'élements de X telle que, pour tout $n \in \mathbb{N}$, $x_n < x_{n+1}$.

Soit $p, q \in \mathbb{N}$ tels que p < q. Alors par transitivité de \leq , $x_p \leq x_q$. Si $x_p = x_q$, alors $x_p \leq x_{p+1} \leq x_q = x_p$, donc $x_p = x_{p+1}$ ce qui est faux. Ainsi, $x_p \neq x_q$. Ceci prouve que l'application $p \longmapsto x_p$ est une injection de \mathbb{N} dans E. C'est impossible car E est un ensemble fini. Ainsi, X possède nécessairement au moins un élément maximal.

6°) Supposons que E^-x est non vide. Il existe $y \in E^-x$. Alors y < x, donc x n'est pas minimal dans E.

Réciproquement, supposons que x n'est pas minimal dans E.

Posons $X = \{a \in E \mid a < x\}$. Alors X est non vide, donc d'après la question précédente, X possède un élément maximal, puis d'après la question $4, E^-x \neq \emptyset$.

- 7°) Soit $x \in E$. Soit $y, z \in E^-x$ avec $y \neq z$. Supposons que y et z sont comparables. Sans perte de généralité, on peut supposer que y < z. Alors y < z < x, donc $\{a \in E \mid y < a < x\}$ est non vide, ce qui est faux car $y \in E^-x$. Ainsi, y et z ne sont pas comparables.
- 8°) \diamond Par définition de E^-x , x est un majorant de E^-x , or s est le plus petit des majorants, donc $x \geq s$.

De plus, si $x = s = \sup(E^-x)$, x étant sup-irréductible, $x \in E^-x$, donc x < x, ce qui est faux. Ainsi, s < x.

- \diamond Soit $y \in E^-x$. s majore E^-x , donc $y \leq s$. Supposons que $y \neq s$. Alors y < s < x, donc $\{a \in E \mid y < a < x\}$ est non vide, ce qui est faux car $y \in E^-x$. Ainsi, y = s. Ceci montre que $E^-x \subset \{s\}$, or E^-x est non vide, donc E^-x est bien un singleton.
- 9°) Notons $K = \{a \in E \mid z \leq a < x\}$. $z \in K$, donc K est non vide. D'après la question 5, K possède au moins un élément maximal, que l'on notera b. Soit $c \in E$ tel que c < x. Supposons que $c \geq b$. Ainsi, $z \leq b \leq c < x$, donc $c \in K$, or b est maximal dans K, donc c = b. Ceci prouve que b est maximal dans $\{a \in E \mid a < x\}$. D'après la question $a, b \in E^-x$, donc $a \in E$. Ceci prouve que $a \in E$ donc $a \in E$. Ceci prouve que $a \in E$ donc $a \in E$.
- ${f 10^\circ}$) \diamond Notons M l'ensemble des majorants de E^-x . On sait que $x \in M$. Supposons que x n'est pas minimal dans M. Alors il existe $y \in M$ tel que y < x. Soit $z \in E^-x$. Alors $z \le y < x$, or $\{a \in E \mid z < a < x\}$ est vide, donc z = y. Ainsi, $E^-x \subset \{y\}$, ce qui est faux car E^-x possède au moins deux éléments. On a montré que x est minimal dans M.
- \diamond Par hypothèse, E^-x ne possède pas de borne supérieure, donc x n'est pas le minimum de M.

Ainsi, il existe $y \in M$ tel que $\neg(x \le y)$. Or $\neg(y < x)$ car x est minimal dans M, donc x et y ne sont pas comparables et y est un majorant de E^-x .

- 11°) Supposons d'abord qu'aucune de ces trois conditions n'est vérifiée.
- Si E possède un minimum avec $x = \min(E)$, alors $x = \sup(\emptyset)$ (en effet, l'ensemble des majorants de \emptyset est E dont le minimum est x), mais $x \notin \emptyset$, donc x n'est pas sup-irréductible.

Sinon, d'après la question 6, E^-x possède au moins 2 éléments et il possède une borne supérieure. D'après la question 8, si x était sup-irréductible, E^-x serait un singleton. Ainsi, x n'est pas sup-irréductible.

- Réciproquement, vérifions que si l'une de ces 3 conditions est vérifiée, alors x est sup-irréductible.
- \diamond Supposons d'abord que x est minimal dans E sans être le minimum de E.

Soit $X \subset E$ telle que X possède un sup avec $x = \sup(X)$.

 $X \neq \emptyset$ (sinon, $x = \sup(\emptyset) = \min(E)$ ce qui est faux), donc il existe $y \in X$. Alors $y \leq x$, mais x est minimal, donc $x = y \in X$. Ceci prouve que x est sup-irréductible.

 \diamond Supposons que E^-x est un singleton égal à $\{y\}$.

Soit $X \subset E$ telle que X possède un sup avec $x = \sup(X)$.

Supposons que $x \notin X$. Alors pour tout $z \in X$, z < x. Alors d'après la question 9, pour tout $z \in X$, $z \le y$. Ainsi, y majore X, mais $y \in E^-x$, donc y < x. y est un majorant de X strictement inférieur à $x = \sup(X)$. C'est impossible, donc $x \in X$. Ainsi, x est sup-irréductible.

 \diamond On suppose enfin que E^-x possède au moins deux éléments et que E^-x ne possède pas de borne supérieure.

Soit $X \subset E$ telle que X possède un sup avec $x = \sup(X)$. Supposons que $x \notin X$.

D'après la question 10, il existe un majorant y de E^-x non comparable avec x.

Soit $z \in X$. Alors z < x. Posons $K = \{a \in E \mid z \le a < x\}$. Le raisonnement de la question 9 montre à nouveau qu'il existe un élément maximal dans K noté b et que $b \in E^-x$. Or y majore E^-x , donc $y \ge b$, mais $b \in K$, donc $b \ge z$. Ainsi, $y \ge z$. Ceci prouve que y est un majorant de X. Or $x = \sup X$, donc $x \le y$, ce qui est faux car x et y ne sont pas comparables. Ceci démontre que x est sup-irréductible.

Partie II: Parties sup-génératrices

12°) Soit $x \in E$. Posons

 $K = \{k \in \mathbb{N}^* \mid \exists x_1, \dots, x_k \in E, \forall i \in \{1, \dots, k-1\}, x_i < x_{i+1}, \text{ et } x_k = x\}.$

K est une partie de \mathbb{N} , non vide car $1 \in K$ (en prenant $x_1 = x$) et K est majorée par le cardinal de E, donc K possède un maximum. On pose $h(x) = \max(K)$.

- 13°) Par hypothèse, il existe $X \subset E$ tel que X possède un sup avec $x = \sup(X)$ et $x \notin X$. Soit $y \in X$. Posons k = h(y). Alors il existe $y_1, \ldots, y_k \in E$ tel que $y_1 < \cdots < y_k = y$. D'après les hypothèses, on a $y_1 < \cdots < y_k = y < x$, donc $h(x) \ge k + 1$. Ainsi, h(x) > h(y), ce qu'il fallait démontrer.
- **14**°) Soit $n \in \mathbb{N}$. Notons R(n) l'assertion suivante : pour tout $x \in E$ tel que h(x) = n, il existe $X \subset S(E)$ tel que X possède un sup et $x = \sup(X)$.

Initialisation: Soit $x \in E$ tel que h(x) = 1. Alors x est minimal (sinon il existerait $x_2 \in E$ tel que $x_2 < x$, donc $h(x) \ge 2$).

Si E admet un minimum avec $x = \min(E)$, alors on a déjà vu que $x = \sup(\emptyset)$ et on a bien que $\emptyset \subset S(E)$. Sinon, d'après le premier cas de la question 11, x est sup-irréductible, donc $x \in S(E)$. On a alors $x = \sup(\{x\})$ et $\{x\} \subset S(E)$. Ainsi, on a montré R(1).

Hérédité : on suppose que $n \ge 2$ et que, pour tout $k \in \{1, ..., n-1\}$, R(k) est vraie. Soit $x \in E$ tel que h(x) = n.

Si x est sup-irréductible, alors on a encore $x = \sup(\{x\})$ et $\{x\} \subset S(E)$.

Supposons maintenant que x n'est pas sup-irréductible. D'après la question précédente, il existe $X \subset E$ tel que $x = \sup(X)$ et tel que, pour tout $y \in X$, h(y) < h(x) = n.

D'après l'hypothèse de récurrence, pour tout $y \in X$, il existe $X_y \subset S(E)$ tel que X_y possède une borne supérieure avec $y = \sup(X_y)$.

Ainsi, $X = \{\sup(X_y) \mid y \in X\}$. D'après la première question, $\bigcup_{y \in X} X_y$ possède une borne supérieure et $x = \sup\left(\bigcup_{y \in X} X_y\right)$, or pour tout $y \in X$, $X_y \subset S(E)$, donc $\bigcup_{y \in X} X_y \subset S(E)$.

Dans tous les cas, on a montré qu'il existe $A \subset S(E)$ tel que $x = \sup(A)$.

Ceci prouve R(n).

D'après le principe de récurrence forte, pour tout $n \in \mathbb{N}^*$, R(n) est vraie, donc S(E)est sup-génératrice.

15°) Par définition de $S_x(E)$, x majore $S_x(E)$.

D'après la question précédente, il existe $X \subset S(E)$ tel que

X admet un sup et $x = \sup(X)$.

Pour tout $z \in X$, $z \leq x$, donc $X \subset S_x(E)$.

Soit y un majorant de $S_x(E)$. Alors y majore X, donc $y \ge x$.

Ainsi, x est le plus petit des majorants de $S_x(E)$, donc $S_x(E)$ possède un sup et $x = \sup(S_x(E)).$

16°) Soit G une partie sup-génératrice de E. Soit $x \in S(E)$. Il existe $X \subset G$ tel que X possède un sup avec $x = \sup(X)$. Mais x est sup-irréductible, donc $x \in X$. Ainsi, $x \in G$. On a bien montré que $S(E) \subset G$.

Réciproquement, Supposons que $S(E) \subset G$. Soit $x \in E$. On a vu que $x = \sup(S_x(E))$, or $S_x(E) \subset G$, donc G est sup-génératrice.

Problème 2 : Le postulat de Bertrand

Partie I: majoration du produit des premiers nombres premiers

1°) Soit
$$n \in \mathbb{N}$$
 et $k \in \{0, \dots, n\}$. Alors $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ et $\binom{n}{n-k} = \frac{n!}{(n-k)!(n-(n-k))!}$, donc $\binom{n}{k} = \binom{n}{n-k}$.

2°) Selon la formule du binôme de Newton,

$$2^{2m+1} = (1+1)^{2m+1} = \sum_{k=0}^{2m+1} {2m+1 \choose k},$$

$$\operatorname{donc} 4^m \times 2 = 2^{2m+1} \ge {2m+1 \choose m} + {2m+1 \choose m+1},$$

$$\operatorname{or} {2m+1 \choose m} = {2m+1 \choose (2m+1)-m} = {2m+1 \choose m+1}, \operatorname{donc} 4^m \times 2 \ge 2 {2m+1 \choose m+1}, \operatorname{ce}$$
qu'il fallait démontrer.

3°) Soit $m \in \mathbb{N}^*$. Soit $p \in \mathbb{P}$ tel que m+1 .

Alors
$$p$$
 divise $\prod_{k=m+2}^{2m+1} k = \frac{(2m+1)!}{(m+1)!} = m! \binom{2m+1}{m+1}$, or p est premier avec $m!$, donc

d'après le théorème de Gauss,
$$p$$
 divise $\binom{2m+1}{m+1}$, pour tout $p\in\mathbb{P}$ tel que

$$m+1 , donc d'après le cours d'arithmétique, $\prod_{\substack{p \in \mathbb{P} \\ m+1 \le p \le 2m+1}} p$ divise le coefficient$$

binomial
$$\binom{2m+1}{m+1}$$
.

4°) Soit
$$n \in \mathbb{N}^*$$
. Notons $R(n)$ la propriété $\prod_{p \in \mathbb{P}_n} p \leq 4^n$.

Pour
$$n = 1$$
, $\prod_{p \in \mathbb{P}_n} p = 1$, car c'est un produit vide, d'où $R(1)$.

Pour
$$n = 2$$
, $\prod_{p \in \mathbb{P}_n} p = 2 \le 16 = 4^2$, donc $R(2)$ est vraie.

Supposons que
$$n \ge 2$$
 et que, pour tout $k \in \{1, ..., n\}$, $R(k)$ est vrai.

Si
$$n+1$$
 est pair, $n+1$ étant différent de 2, il n'est pas premier,

Si
$$n+1$$
 est pair, $n+1$ étant différent de 2, il n'est pas premier, donc
$$\prod_{p\in\mathbb{P}_{n+1}} p = \prod_{p\in\mathbb{P}_n} p \le 4^n \le 4^{n+1}.$$

Supposons maintenant que
$$n+1$$
 est impair. $n+1 \geq 3$, donc il existe $m \geq 1$ tel que $n+1=2m+1$. Alors $\prod_{p\in\mathbb{P}_{n+1}}p=\Big(\prod_{p\in\mathbb{P}\cap[0,m+1]}p\Big)\times\Big(\prod_{p\in\mathbb{P}\cap[m+2,2m+1]}p\Big).$

$$m \ge 1$$
, donc $m + 1 \le 2m = n$.

Ainsi, d'après l'hypothèse de récurrence,
$$\prod_{p\in\mathbb{P}\cap[0,m+1]}p\leq 4^{m+1}.$$

De plus, d'après la question 3, il existe $k \in \mathbb{Z}$ tel que $\prod_{p \in \mathbb{P} \cap [m+2,2m+1]} p = k \binom{2m+1}{m+1}$, or

$$\prod_{p\in\mathbb{P}\cap[m+2,2m+1]}p\text{ et }\binom{2m+1}{m+1}\text{ sont dans }\mathbb{N}^*,\text{ donc }k\in\mathbb{N}^*.\text{ On en déduit que }$$

$$\prod_{p\in\mathbb{P}\cap[m+2,2m+1]}p\leq\binom{2m+1}{m+1}, \text{ puis d'après la première question, que }\prod_{p\in\mathbb{P}\cap[m+2,2m+1]}p\leq 4^m.$$
 Ainsi, en combinant ces différentes inégalités, on obtient
$$\prod_{p\in\mathbb{P}\cap[m+2,2m+1]}p\leq 4^{m+1}\times 4^m=4^{n+1},$$

ce qui démontre R(n+1).

Le principe de récurrence forte permet de conclure.

Partie II: une formule de Legendre

5°) Soit $k \in \mathbb{N}$. n et p sont strictement positifs et $p \geq 2$, donc $\ln(p) > 0$. Ainsi, $n < p^k \iff \ln(n) < k \ln(p) \iff \frac{\ln n}{\ln n} < k \iff \left\lfloor \frac{\ln n}{\ln n} \right\rfloor < k$, donc si l'on pose $m = \left\lfloor \frac{\ln n}{\ln n} \right\rfloor$, on a montré que $\{k \in \mathbb{N} / n < p^k\} = [m+1, +\infty[\cap \mathbb{N}]]$.

Ainsi, $\{k \in \mathbb{N} / n < p^k\}$ possède bien un minimum, il est égal à $\left| \left\lfloor \frac{\ln n}{\ln n} \right\rfloor + 1 \right|$.

6°) Pour tout $k \in \mathbb{N}$, notons U_k l'ensemble des entiers compris entre 1 et n qui sont multiples de p^k .

Soit $k \in \mathbb{N}$. Soit $a \in \mathbb{N}_n$. Alors $v_p(a) = k$ si et seulement si a est un multiple de p^k sans être un multiple de p^{k+1} , donc $\Omega_k = U_k \setminus U_{k+1}$. Or $U_{k+1} \subset U_k$, donc $|\Omega_k| = |U_k| - |U_{k+1}|$. D'autre part, $U_k = \{bp^k \mid b \in \mathbb{N} \text{ et } 1 \leq bp^k \leq n\}$ et, pour tout $b \in \mathbb{N}$, $1 \leq bp^k \leq n \iff 1 \leq b \leq \left\lfloor \frac{n}{p^k} \right\rfloor$, donc $|U_k| = \left\lfloor \frac{n}{p^k} \right\rfloor$.

$$1 \le bp^k \le n \iff 1 \le b \le \frac{n}{p^k} \iff 1 \le b \le \left\lfloor \frac{n}{p^k} \right\rfloor, \text{ donc } |U_k| = \left\lfloor \frac{n}{p^k} \right\rfloor.$$

En conclusion, $|\Omega_k| = \left\lfloor \frac{n}{n^k} \right\rfloor - \left\lfloor \frac{n}{n^{k+1}} \right\rfloor$.

On remarquera que, d'après la question précédente, en posant $k_0 = \left| \frac{\ln n}{\ln n} \right| + 1$, pour tout $k \geq k_0$, Ω_k est vide.

En effet, $ab = \left(\prod_{q \in \mathbb{P}} q^{v_q(a)}\right) \times \left(\prod_{q \in \mathbb{P}} q^{v_q(b)}\right)$, tous ces produits étant constitués d'un nombre

fini de facteurs différents de 1, donc $ab = \prod q^{v_q(a)+v_q(b)}$ et on conclut en utilisant

l'unicité de la décomposition de ab en produit de nombres premiers.

$$\Rightarrow \text{ Or } n! = \prod_{1 \le k \le n} k, \text{ donc } v_p(n!) = \sum_{k=1}^n v_p(k).$$

De plus la famille $(\Omega_h)_{0 \le h \le k_0-1}$ forme une partition de $\{1, \ldots, n\}$,

donc
$$v_p(n!) = \sum_{h=0}^{k_0-1} \sum_{k \in \Omega_h} v_p(k) = \sum_{h=0}^{k_0-1} h |\Omega_h|.$$

♦ D'après la question précédente, on obtient :

$$v_p(n!) = \sum_{k=0}^{k_0-1} \left(k \left\lfloor \frac{n}{p^k} \right\rfloor - k \left\lfloor \frac{n}{p^{k+1}} \right\rfloor \right)$$

$$= \sum_{k=0}^{k_0-1} \left(k \left\lfloor \frac{n}{p^k} \right\rfloor - (k+1) \left\lfloor \frac{n}{p^{k+1}} \right\rfloor \right) + \sum_{k=0}^{k_0-1} \left\lfloor \frac{n}{p^{k+1}} \right\rfloor$$

$$= 0 - 0 + \sum_{k \ge 0} \left\lfloor \frac{n}{p^{k+1}} \right\rfloor \text{ (par téléscopage)}$$

$$= \sum_{k \ge 1} \left\lfloor \frac{n}{p^k} \right\rfloor$$

Partie III : diviseurs premiers de $\binom{2n}{n}$

- 8°) p divise $(n!)a_n = (2n)(2n-1)\cdots(n+1)$, or p est premier, donc p divise l'un des facteurs $n+1, n+2, \ldots, 2n$. Ceci implique que $p \leq 2n$. De plus, on a supposé qu'il n'existe aucun nombre premier entre n+1 et 2n, donc
- De plus, on a supposé qu'il n'existe aucun nombre premier entre n+1 et 2n, donc $p \le n$.
- **9**°) Supposons que $p > \frac{2n}{3}$. Ainsi, $\frac{2n}{3} .$

Alors $n < \frac{4n}{3} < 2p \le 2n$ et 2n < 3p, donc les seuls multiples de p entre 1 et 2n sont p et 2p, avec 2p > n. On en déduit que $v_p((2n)!) = 2$ et $v_p(n!) = 1$. Or $(2n)! = a_n(n!)^2$, donc $v_p((2n)!) = v_p(a_n) + 2v_p(n!)$. Ainsi $v_p(a_n) = 0$, ce qui est faux

Or $(2n)! = a_n(n!)^2$, donc $v_p((2n)!) = v_p(a_n) + 2v_p(n!)$. Ainsi $v_p(a_n) = 0$, ce qui est faux car p divise a_n . Ainsi, on a bien montré que $p \leq \frac{2n}{3}$.

10°) \diamond On vient de voir que $v_p(a_n) = v_p((2n)!) - 2v_p(n!)$, or d'après la formule de Legendre, pour tout $N \ge \left\lfloor \frac{\ln n}{\ln p} \right\rfloor$, $v_p(n!) = \sum_{k=1}^{N} \left\lfloor \frac{n}{p^k} \right\rfloor$,

donc on a bien
$$v_p(a_n) = \sum_{k=1}^{\lfloor \frac{\ln(2n)}{\ln p} \rfloor} \left(\lfloor \frac{2n}{p^k} \rfloor - 2 \lfloor \frac{n}{p^k} \rfloor \right).$$

 \diamond Soit $x \in \mathbb{R}$. Montrons que $\lfloor 2x \rfloor - 2 \lfloor x \rfloor \in \{0, 1\}$.

En effet, $2x - 1 < \lfloor 2x \rfloor \le 2x$ et $2(x - 1) < 2\lfloor x \rfloor \le 2x$,

donc $(2x-1)-2x<\lfloor 2x\rfloor-2\lfloor x\rfloor<2x-2(x-1)$, puis $-1<\lfloor 2x\rfloor-2\lfloor x\rfloor<2$, ce qui conclut car $\lfloor 2x\rfloor-2\lfloor x\rfloor\in\mathbb{N}$.

 $\Rightarrow \text{ Ainsi, pour tout } k \in \{1, \dots, \lfloor \frac{\ln(2n)}{\ln p} \rfloor \}, \ \left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor \in \{0, 1\},$

donc
$$v_p(a_n) \le \sum_{k=1}^{\lfloor \frac{\ln(2n)}{\ln p} \rfloor} 1 = \lfloor \frac{\ln(2n)}{\ln p} \rfloor.$$

11°)
$$\diamond$$
 On suppose que $p > \sqrt{2n}$.

Alors
$$\frac{\ln(2n)}{\ln p} < \frac{\ln(2n)}{\frac{1}{2}\ln(2n)} = 2$$
, donc $v_p(a_n) \le \left\lfloor \frac{\ln(2n)}{\ln p} \right\rfloor \le 1$.
 $v_p(a_n) \le \frac{\ln(2n)}{\ln p}$, donc $p^{v_p(a_n)} = e^{v_p(a_n)\ln p} \le e^{\ln(2n)} = 2n$.

$$v_p(a_n) \le \frac{\ln(2n)}{\ln p}, \text{ donc } p^{v_p(an)} = e^{v_p(a_n) \ln p} \le e^{\ln(2n)} = 2n$$

Partie IV : démonstration du postulat de Bertrand

12°) D'après la question 9, $a_n = \prod_{n \in \mathbb{N}} p^{v_p(a_n)}$, puis d'après la question précédente,

$$a_n \leq \prod_{p \in \mathbb{P} \setminus \{2, \dots, p\}} p^{v_p(a_n)} \prod_{p \in \mathbb{P} \setminus \{2, \dots, p\}} p$$
, or toujours d'après la question précédente,

12°) D'après la question 9,
$$a_n = \prod_{p \in \mathbb{P} \cap [2, \frac{2n}{3}]} p^{v_p(a_n)}$$
, puis d'après la question précédente, $a_n \leq \prod_{p \in \mathbb{P} \cap [2, \sqrt{2n}]} p^{v_p(a_n)} \prod_{p \in \mathbb{P} \cap [\sqrt{2n}, \frac{2n}{3}]} p$, or toujours d'après la question précédente,
$$\prod_{p \in \mathbb{P} \cap [2, \sqrt{2n}]} p^{v_p(a_n)} \leq \prod_{p \in \mathbb{P} \cap [2, \sqrt{2n}]} (2n) \leq (2n)^{\sqrt{2n}-1}$$
, car le cardinal de $\mathbb{P} \cap [2, \sqrt{2n}]$ est inférieur à $\sqrt{2n} - 1$

inférieur à $\sqrt{2n-1}$

De plus, d'après la question 4,
$$\prod_{p \in \mathbb{P} \cap]\sqrt{2n}, \frac{2n}{3}]} p \leq \prod_{p \in \mathbb{P}_{\lfloor \frac{2n}{3} \rfloor}} p \leq 4^{\lfloor \frac{2n}{3} \rfloor} \leq 4^{\frac{2n}{3}}.$$

On en déduit que $a_n < (2n)^{\sqrt{2n}-1}4^{\frac{2n}{3}}$

On calcule
$$\frac{\binom{2n}{k+1}}{\binom{2n}{k}} = \frac{(2n)!}{(k+1)!(2n-k-1)!} \times \frac{k!(2n-k)!}{(2n)!} = \frac{2n-k}{k+1},$$

$$\operatorname{donc}\left(\frac{2n}{k}\right) \geq \binom{2n}{k} \iff \frac{2n-k}{k+1} \geq 1 \iff 2n-k \geq k+1 \iff 2k \leq 2n-1.$$

Ainsi,
$$\binom{2n}{k+1} \ge \binom{2n}{k} \iff k \le n-1$$
. Ceci démontre que la suite $\binom{2n}{k}_{0 \le k \le 2n}$

est croissante lorsque k varie de 0 à n, puis est décroissante lorsque k varie de n à En particulier, cette suite atteint son maximum lorsque k = n,

donc pour tout
$$k \in \{1, \dots, 2n\}, a_n \ge \binom{2n}{k}$$
.

14°) D'après la formule du binôme de Newton,

$$4^{n} = (1+1)^{2n} = \sum_{k=0}^{2n} {2n \choose k} = 2 + \sum_{k=1}^{2n-1} {2n \choose k} \le 2 + (2n-1)a_{n},$$

d'après la question précédente. Or

$$a_n = \frac{(2n)(2n-1)\cdots(n+1)}{n!} = 2\frac{(2n-1)(2n-2)\cdots(n+1)}{(n-1)!} = 2\left(\frac{2n-1}{n-1}\right) \ge 2,$$

donc $2 - a_n \le 0$ puis $4^n \le 2na_n$, ce qui montre que $a_n \ge \frac{4^n}{2n}$.

15°) En combinant les questions 12 et 14, on obtient que $\frac{4^n}{2n} \leq (2n)^{\sqrt{2n}-1} 4^{\frac{2n}{3}}$, donc $4^{\frac{n}{3}} \leq (2n)^{\sqrt{2n}}$, puis en passant au logarithme, $\frac{n}{3} \ln 4 \leq \sqrt{2n} \ln(2n)$.

En divisant par 2n > 0, on obtient $\frac{\ln(\sqrt{2n})}{\sqrt{2n}} \ge \frac{1}{2} \frac{\ln 4}{6} = \frac{\ln 2}{6}$.

- $\begin{array}{l} \textbf{16}^{\circ}\textbf{)} \ \, \diamond \frac{\ln 2}{6} \geq \frac{\ln (32)}{32} \Longleftrightarrow 32 \ln 2 \geq 6 \ln (2^5) \Longleftrightarrow 32 \geq 6 \times 5. \text{ La dernière propriété est vraie, donc } \frac{\ln 2}{6} \geq \frac{\ln (32)}{32}. \end{array}$
- ♦ Pour tout $x \in]e, +\infty[$, posons $f(x) = \frac{\ln x}{x}$. f est dérivable et, pour tout $x \in]e, +\infty[$, $f'(x) = \frac{1 \ln x}{x} < 0$, donc f est strictement décroissante.

 $\sqrt{2n} > e \iff n \ge \frac{e^2}{2} \iff n \ge 4$ (d'après l'énoncé). Or on a supposé qu'aucun nombre premier n'existe entre n+1 et 2n, donc $n \notin \{1,2,3\}$. Ainsi, $n \ge 4$, donc $\sqrt{2n} \in]e, +\infty[$ et $32 \in]e, +\infty[$. Or $\frac{\ln(\sqrt{2n})}{\sqrt{2n}} \ge \frac{\ln(32)}{32}$ et f est strictement décroissante, donc $\sqrt{2n} \le 32$. On en déduit que $n \le \frac{1}{2}(32)^2 = 512$.

 \diamond Il reste à vérifier à la main ou avec un ordinateur, que pour tout entier k compris entre 4 et 512, on peut toujours trouver un nombre premier entre k+1 et 2k. C'est contraire à l'hypothèse portant sur n en début de partie III. On obtient une contradiction, donc il existe donc bien un nombre premier compris entre n+1 et 2n.