DM 14 : un corrigé

Partie I : Groupes archimédiens

1°)

 \diamond Supposons que $0_G'$ est un second élément neutre de G. Ainsi, pour tout $x\in G,$ $x+0_G=x$ et $0_G'+x=x.$

Ainsi, d'après la première égalité appliquée avec $x=0_G'$, $0_G'+0_G=0_G'$ et d'après la seconde égalité appliquée avec $x=0_G$, $0_G'+0_G=0_G$.

On en déduit que $0_G = 0'_G$, ce qui prouve l'unicité de l'élément neutre.

 \diamond Soit $x \in G$. Supposons qu'il possède deux symétriques, notés y et z.

Alors $y = y + 0_G = y + (x + z) = (y + x) + z = 0_G + z = z$, ce qui prouve l'unicité du symétrique de x.

- **2**°) Soit $(n, m), (n', m'), (n'', m'') \in \mathbb{Z}^2$.
 - $(n,m)+(n',m')=(n+n',m+m')\in\mathbb{Z}^2$, donc l'énoncé définit bien une loi interne.
 - (n,m)+(n',m')=(n+n',m+m')=(n'+n,m'+m)=(n',m')+(n,m), donc l'addition ainsi définie est commutative.
 - (n,m) + (0,0) = (n+0,m+0) = (n,m), donc (0,0) est un élément neutre.
 - (n,m) + ((n',m') + (n'',m'')) = (n+n'+n'',m+m'+m'') = ((n,m) + (n',m')) + (n'',m''),
 - donc l'addition est associative.
 - -(n,m) + (-n,-m) = (n-n,m-m) = (0,0), donc (n,m) admet (-n,-m) comme symétrique.

Ceci prouve que $(\mathbb{Z}^2, +)$ est un groupe commutatif.

- **3°)** Remarquons que pour tout $(x,y), (x',y') \in \mathbb{Z}^2, (x,y) \leq_l (x',y') \Longrightarrow x \leq x'$. Montrons déjà que \leq_l est un ordre. Soit $(n,m), (n',m'), (n'',m'') \in \mathbb{Z}^2$.
 - On a n = n et $m \le m$, donc $(n, m) \le_l (n, m)$. Ainsi \le_l est réflexive.
 - Supposons que $(n, m) \leq_l (n', m')$ et que $(n', m') \leq_l (n, m)$. Alors, d'après la remarque précédente, $n \leq n'$ et $n' \leq n$, donc n = n'. Ainsi, $(n, m) \leq_l (n, m')$ et $(n, m') \leq_l (n, m)$, donc $m \leq m'$ et $m' \leq m$, ce qui prouve que m = m'. Ainsi (n, m) = (n', m'). On a prouvé que \leq_l est antisymétrique.
 - Supposons que $(n, m) \leq_l (n', m')$ et que $(n', m') \leq_l (n'', m'')$. Toujours d'après la remarque, $n \leq n'$ et $n' \leq n''$, donc $n \leq n''$. Si n < n'', alors $(n, m) \leq_l (n'', m'')$.

Sinon, alors n = n'', donc n = n' = n''. Alors $(n, m) \le_l (n, m')$ et $(n, m') \le_l (n, m'')$, donc $m \le m'$ et $m' \le m''$. Alors $m \le m''$ et on a encore $(n, m) \le_l (n'', m'')$.

Ainsi, dans tous les cas, $(n, m) \leq_l (n'', m'')$, ce qui prouve que \leq_l est transitive.

Ainsi, \leq_l est un ordre sur \mathbb{Z}^2 . Montrons qu'il est total. Soit $(n, m), (n', m') \in \mathbb{Z}^2$.

Si $n \neq n'$, alors n < n' ou n' < n, donc $(n, m) \leq_l (n', m')$ ou $(n', m') \leq_l (n, m)$.

Si n = n', alors $m \le m'$ ou $m' \le m$,

donc on a encore $(n, m) \leq_l (n', m')$ ou $(n', m') \leq_l (n, m)$.

Il reste à montrer la compatibilité de \leq_l avec l'addition de \mathbb{Z}^2 .

Soit $(n, m), (n', m'), (n'', m'') \in \mathbb{Z}^2$ tels que $(n, m) \le (n', m')$.

Si n < n', alors n + n'' < n' + n'', donc $(n, m) + (n'', m'') \le (n', m') + (n'', m'')$.

Si n = n', alors $m \le m'$. Dans ce cas, n + n'' = n' + n'' et $m + m'' \le m' + m''$, donc on a encore $(n, m) + (n'', m'') \le (n', m') + (n'', m'')$.

4°) Notons R(n) l'assertion : $nx > 0_G$.

Lorsque n = 1, $x > 0_G$, d'où R(1).

Pour $n \geq 1$, supposons R(n).

On a $0 \le x_G$, donc par compatibilité de \le avec +, on en déduit

que $nx \le nx + x = (n+1)x$. Ainsi, on a $0_G < nx \le (n+1)x$, donc $0_G < (n+1)x$, ce qui prouve R(n+1).

D'après le principe de récurrence, pour tout $n \in \mathbb{N}^*$, 0 < nx.

5°) Prenons x = (1,0) et y = (0,1). On a bien $(0,0) \le_l (1,0)$ et $(0,0) \ne (1,0)$, donc $0_{\mathbb{Z}^2} < (1,0) = x$ et de même $0_{\mathbb{Z}^2} < (0,1) = y$.

On montre par récurrence que, pour tout $n \in \mathbb{N}$, ny = n(0,1) = (0,n).

Or (0, n) < (1, 0), donc pour tout $n \in \mathbb{N}$, ny < x, ce qui prouve que $(\mathbb{Z}^2, +, \leq_l)$ n'est pas un groupe archimédien.

Partie II: Anneaux archimédiens

 $6^{\circ})$

- \diamond Soit $a \in A$. Par distributivité, $(0_A \times a) + (0_A \times a) = (0_A + 0_A) \times a = 0_A \times a$, donc en ajoutant le symétrique de $0_A \times a$, on obtient
- $-(0_A \times a) + ((0_A \times a) + (0_A \times a)) = -(0_A \times a) + (0_A \times a) = 0_A$, donc par associativité de l'addition, on obtient que $0_A \times a = 0_A$.
- \diamond Supposons que $1_A = 0_A$. Alors, pour tout $a \in A$, $a = 1_A \times a = 0_A \times a = 0_A$ d'après le point précédent. Ainsi $A \subset \{0_A\}$, or A est un anneau, donc $0_A \in A$. Ainsi, si $1_A = 0_A$, alors $A = \{0_A\}$. On conclut par contraposition.
- 7°) Posons x = (1, -1) et y = (0, 1). On a $0_{\mathbb{Z}^2} = (0, 0) \le (1, -1) = x$ et $0_{\mathbb{Z}^2} \le (0, 1) = y$, mais xy = (0, -1), donc $\neg[(0, 0) \le xy]$. Ainsi, la régle des signes n'est pas vérifiée, donc $(\mathbb{Z}^2, +, \times, \le_l)$ n'est pas un anneau totalement ordonné.

- 8°) Soit $P, Q, R \in \mathbb{R}[X]$.
 - P P = 0 et $0 \le 0$, donc $P \le P : \le$ est réflexive.
 - Supposons que $P \leq Q$ et $Q \leq P$. Raisonnons par l'absurde en supposant que $P \neq Q$. Alors Q-P est un polynôme non nul. Notons a son coefficient dominant. Par hypothèse, $0 \leq Q-P$ et $Q-P \neq 0$, donc a>0. Mais on a aussi $0 \leq P-Q$ et $P=Q \neq 0$, or le coefficient dominant de P=Q vaut Q=0. C'est impossible, donc Q=0. Ainsi, Q=0 est antisymétrique.
 - Supposons que $P \leq Q$ et que $Q \leq R$.

Si P = Q, alors $P = Q \le R$.

Si Q = R, alors $P \leq Q = R$.

Supposons maintenant que $P \neq Q$ et que $Q \neq R$.

On a R - P = (R - Q) + (Q - P), donc lorsque R - Q et Q - P ont le même degré, dom(R - P) = dom(R - Q) + dom(Q - P) > 0,

et lorsque $\deg(R-Q) < \deg(Q-P)$, $\deg(R-Q) = \deg(Q-P) > 0$. Enfin, lorsque $\deg(Q-P) < \deg(R-Q)$, $\deg(R-Q) = \deg(R-Q) > 0$.

Ainsi, dans tous les cas, on a montré que $P \leq R$, ce qui prouve que \leq est transitive.

9°)

- \diamond Soit $P,Q \in \mathbb{R}[X]$. Si P=Q, alors $P \leq Q$. Sinon, notons a le coefficient dominant de Q-P. Si a>0, alors $P \leq Q$ et si a<0, alors le coefficient dominant de P-Q est strictement positif, donc $Q \leq P$. Ainsi, dans tous les cas, P et Q sont comparables, ce qui prouve que \leq est un ordre total sur $\mathbb{R}[X]$.
- \diamond Soit $P,Q,R \in \mathbb{R}[X]$. On suppose que $P \leq Q$. Sachant que (Q+R)-(P+R)=Q-P, on en déduit que $P+R \leq Q+R$. Ainsi, \leq est compatible avec +.
- \diamond Soit $P, Q \in \mathbb{R}[X]$ tels que $0 \le P$ et $0 \le Q$.
- Si P = 0 ou Q = 0, alors PQ = 0, donc $0 \le PQ$.

Sinon, dom(PQ) = dom(P)dom(Q) > 0, donc $0 \le PQ$. Ainsi, \le vérifie la régle des signes. En conclusion, on a montré que $(\mathbb{R}[X], +, \times, \le)$ est un anneau totalement ordonné.

10°) Posons x = X et $y = 1_{\mathbb{R}[X]}$. Ainsi, 0 < x et 0 < y. Soit $n \in \mathbb{N}$. alors x - ny = X - n a pour coefficient dominant 1, qui est strictement

positif, donc ny < x. L'ordre étant total, on en déduit que $\neg(x < ny)$.

Ainsi, $(\mathbb{R}[X], +, \leq)$ n'est pas archimédien.

Partie III : Corps des fractions d'un anneau intègre

11°) On sait que $(\mathbb{R}[X], +, \times)$ est un anneau commutatif, différent de $\{0_{\mathbb{R}[X]}\}$. Soit $P, Q \in \mathbb{R}[X]$ tels que PQ = 0. Alors $-\infty = \deg(0) = \deg(PQ) = \deg(P) + \deg(Q)$, donc $\deg(P) = -\infty$ où $\deg(Q) = -\infty$, donc P = 0 ou Q = 0. Ainsi, $(\mathbb{R}[X], +, \times)$ est intègre.

- 12°) Soit $x, y, z \in K$ avec $0_A < z$.
- \diamond Supposons que $x \leq y$.

Alors par compatibilité avec l'addition, $0 = x + (-x) \le y + (-x)$, donc $0 \le y - x$, puis d'après la règle des signes, $0 \le z(y-x) = zy - zx$. Alors par compatibilité avec l'addition, $zx \le zy - zx + zx = zy$.

- \diamond Supposons maintenant que $\neg(x \leq y)$. L'ordre étant total, y < x, donc d'après le sens direct que l'on vient d'établir, $zy \le zx$. De plus, si zx = zy, alors z(x-y) = 0, or $z \ne 0$ et l'anneau est intègre, donc $x - y = 0_A$ puis x = y ce qui est faux car y < x. Ainsi $zy \le zx$ et $zy \ne zx$, donc zy < zx. On a donc montré que $\neg(x \le y) \Longrightarrow \neg(zx \le zy)$. La contraposée fournit la réciproque.
- 13°) Il suffit de montrer que R est réflexive, symétrique et transitive. Pour cela, on considère trois éléments quelconques de $A \times (A \setminus \{0_A\})$, notés (a, b), (c, d) et (e, f).
 - ab = ba, donc (a, b) R (a, b). Ainsi, R est réflexive.
 - Supposons que (a, b) R (c, d). Ainsi, ad = bc, or A est commutatif, donc cb = da, ce qui prouve que (c,d) R (a,b), donc R est symétrique.
 - Supposons que (a,b) R (c,d) et que (c,d) R (e,f). Alors ad = bc et cf = de, donc (ad)f = b(cf) = bde, donc d(af - be) = 0. A est intègre et $d \neq 0$, donc af = be ce qui montre que (a, b) R (e, f). Ceci prouve que R est transitive.
- 14°) A est intègre, donc lorsque $b, d \in A \setminus \{0\}, bd \neq 0$, ce qui permet d'utiliser les quantités $\frac{ac}{bd}$ et $\frac{ad+cb}{bd}$.

Il reste à vérifier que les quantités $\frac{ac}{bd}$ et $\frac{ad+cb}{bd}$ ne dépendent que de $\frac{a}{b}$ et $\frac{c}{d}$, c'est-à-dire des classes d'équivalence de (a, b) et de (c, d)

Supposons que $(a,b)\ R\ (a_1,b_1)$ et $(c,d)\ R\ (c_1,d_1)$

Il s'agit donc de montrer que $\frac{ac}{bd} = \frac{a_1c_1}{b_1d_1}$ et que $\frac{ad+cb}{bd} = \frac{a_1d_1+c_1b_1}{b_1d_1}$. On a $ab_1 = ba_1$ et $cd_1 = dc_1$, donc $acb_1d_1 = (ab_1)(cd_1) = (ba_1)(dc_1) = bda_1c_1$. Ainsi, $\frac{ac}{bd} = \frac{a_1c_1}{b_1d_1}$.

De plus, $(ad + cb)b_1d_1 = (ab_1)(dd_1) + (cd_1)(bb_1) = ba_1dd_1 + dc_1bb_1 = (a_1d_1 + c_1b_1)bd$, donc $\frac{ad + cb}{bd} = \frac{a_1d_1 + c_1b_1}{b_1d_1}$.

 15°)

 \diamond Vérifions d'abord que (K, +) est un groupe abélien;

- Soit $(a, b), (c, d), (e, f) \in A \times (A \setminus \{0_A\})$. $-\frac{c}{d} + \frac{a}{b} = \frac{cb + da}{db} = \frac{ad + bc}{bd} = \frac{a}{b} + \frac{c}{d}, \text{ donc l'addition est commutative.}$
 - Posons $0_K = \frac{0_A}{1_A}$. Pour tout $(a,b) \in A \times (A \setminus \{0_A\})$, d'après la question 6,

 $0_K + \frac{a}{\kappa} = \frac{0_A b + 1_A a}{1.h} = \frac{a}{h}$, donc 0_K est un élément neutre pour l'addition.

 $-\frac{a}{b} + \frac{-a}{b} = \frac{ab + (-a)b}{bb} = \frac{(a-a)b}{bb} = \frac{0ab}{bb}, \text{ donc d'après la question 6},$

$$\frac{a}{b} + \frac{-a}{b} = \frac{0}{bb} = \frac{0}{1}, \text{ car } (0, bb) \ R \ (0, 1), \text{ donc } \frac{a}{b} + \frac{-a}{b} = 0. \text{ Ainsi, tout \'el\'ement}$$
 de K possède un symétrique, et $-\frac{a}{b} = \frac{-a}{b}$.

de
$$K$$
 possède un symétrique, et $-\frac{a}{b} = \frac{-a}{b}$.

$$-\left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f} = \frac{ad + bc}{bd} + \frac{e}{f} = \frac{(ad + bc)f + bde}{bdf}$$
et $\frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right) = \frac{a}{b} + \frac{cf + de}{df} = \frac{adf + b(cf + de)}{bdf}$,
donc $\left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f} = \frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right)$, ce qui prouve que l'addition est associative.

 \diamond On vérifie ensuite que $(K, +, \times)$ est un anneau :

- Soit à nouveau (a, b), (c, d), $(e, f) \in A \times (A \setminus \{0_A\})$. $-\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd} = \frac{ca}{db} = \frac{c}{d} \times \frac{a}{b}$, donc la multiplication est commutative.
 - Posons $1_K = \frac{1_A}{1_A}$. Alors $1_K \times \frac{a}{b} = \frac{1_A a}{1_A b} = \frac{a}{b}$, donc 1_K est un élément neutre pour
 - $-\left(\frac{a}{b}\times\frac{c}{d}\right)\times\frac{e}{f}=\frac{(ac)e}{(bd)f}=\frac{a}{b}\times\left(\frac{c}{d}\times\frac{e}{f}\right)$, donc la multiplication est associative.
 - $-\frac{a}{b} \times \left(\frac{c}{d} + \frac{e}{f}\right) = \frac{a}{b} \times \frac{cf + de}{df} = \frac{acf + ade}{bdf} \text{ et}$

 $\left(\frac{a}{b} \times \frac{c}{d}\right) + \left(\frac{a}{b} \times \frac{e}{f}\right) = \frac{ac}{bd} + \frac{ae}{bf} = \frac{acbf + bdae}{bdbf}, \text{ donc, en simplifiant par } b \text{ le}$ numérateur et le dénominateur, ce qui est possible car pour tout

 $x, y \in A \times (A \setminus \{0_A\}), (bx, by) R(x, y),$ on montre que le produit est distributif par rapport à l'addition.

16°) Soit $(K, +, \times)$ un corps. Alors c'est un anneau commutatif tel que $K \neq \{0_K\}$. Soit $x, y \in K$ tels que $xy = 0_K$. Si $x \neq 0$, alors x^{-1} est défini car K est un corps, donc $y = 1_K \times y = (x^{-1} \times x) \times y = x^{-1} \times (x \times y) = x^{-1} \times 0_K = 0_K$ d'après la question 6. Ceci montre que $x = 0_K$ ou $y = 0_K$, donc $(K, +, \times)$ est bien un anneau intègre.

— $(A, +, \times)$ est intègre, donc $A \neq \{0_A\}$, donc d'après la question $6, 0_A \neq 1_A$. On en déduit que $\neg((0_A, 1_A) \ R \ (1_A, 1_A))$, donc $1_K = \frac{1_A}{1_A} \neq \frac{0_A}{1_A} = 0_K$. Ainsi, $K \neq \{0_K\}$.

— Soit
$$f = \frac{a}{b} \in K \setminus \{0_K\}$$
: $\frac{a}{b} \neq \frac{0_A}{1_A}$, donc $a \neq 0_A$. Ainsi, $(b, a) \in A \times (A \setminus \{0_A\})$ et $\frac{b}{a}$ est un élément de K . De plus $\frac{a}{b} \times \frac{b}{a} = \frac{ab}{ab} = \frac{1_A}{1_A}$ car (ab, ab) R $(1_A, 1_A)$,

donc $f \times \frac{b}{a} = 1_K$. Ainsi, tout élément non nul de K est inversible. De plus, on

a montré que lorsque $b \neq 0_A$, $\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$.

Ceci montre que $(K, +, \times)$ est un corps

18°) Soit $a, b \in A$.

$$-\varphi(a)+\varphi(b)=\frac{a}{1_A}+\frac{b}{1_A}=\frac{a+b}{1_A}=\varphi(a+b).$$

$$- \varphi(a) \times \varphi(b) = \frac{a}{1_A} \times \frac{b}{1_A} = \frac{ab}{1_A} = \varphi(ab).$$

$$- \varphi(1_A) = \frac{1_A}{1_A} = 1_K,$$

donc φ est un morphisme d'anneaux.

Soit $a, b \in A$ tels que $\varphi(a) = \varphi(b)$. Alors $(a, 1_A)$ R $(b, 1_A)$, donc a = b. Ainsi φ est injective.

19°) Soit
$$f \in K$$
. Il existe $(a,b) \in A \times (A \setminus \{0\})$ tel que $f = \frac{a}{b}$.

On peut écrire $f = \frac{a}{1_A} \times \left(\frac{b}{1_A}\right)^{-1}$, donc grâce à l'identification précédente, $f = a \times b^{-1}$, ce qui montre que $K \subset \{a \times b^{-1} \ / \ (a,b) \in A \times (A \setminus \{0\})\}$.

Réciproquement, si $(a, b) \in A \times (A \setminus \{0\})$, alors $a, b \in K$ avec $b \neq 0$, or K est un corps, donc $ab^{-1} \in K$. Ainsi, $K = \{a \times b^{-1} / (a, b) \in A \times (A \setminus \{0\})\}$.

Partie IV: Corps non archimédien

20°) Soit \leq un ordre sur \mathbb{C} .

Supposons que $(\mathbb{C}, +, \times, \leq)$ est un corps totalement ordonné.

- ♦ Soit $z \in \mathbb{C}$. D'après la règle des signes, si $0 \le z$, alors $0 \le z^2$. Mais si $z \le 0$, alors par compatibilité de \le avec +, $0 = z + (-z) \le 0 + (-z)$, donc $0 \le (-z)$, puis d'après la règle des signes, $0 \le (-z)^2 = z^2$. Ainsi, pour tout $z \in \mathbb{C}$, $0 \le z^2$.
- \diamond En particulier, $0 \le i^2 = -1$, donc $1 = 1 + 0 \le 1 + (-1) = 0$, or $0 \le 1^2 = 1$, donc par antisymétrie de \le , 1 = 0, ce qui est faux dans \mathbb{C} .

En conclusion, pour tout ordre \leq sur \mathbb{C} , $(\mathbb{C}, +, \times, \leq)$ n'est pas un corps totalement ordonné.

21°) Procédons par analyse-synthèse.

Analyse : supposons qu'il existe un ordre sur $\mathbb{R}(X)$ qui prolonge l'ordre défini sur $\mathbb{R}[X]$ en question 8 et pour lequel $(\mathbb{R}(X), +, \times, \leq)$ est un corps totalement ordonné.

Soit
$$F, G \in \mathbb{R}(X)$$
. Il existe $(A, B), (C, D) \in \mathbb{R}[X] \times (\mathbb{R}[X] \setminus \{0_{\mathbb{R}[X]}\})$ tels que $F = \frac{A}{B}$

et $G = \frac{C}{D}$. Quitte à diviser A et B par le coefficient dominant de B, on peut supposer que B est unitaire. De même, on impose que D est unitaire. Alors d'après la définition de la question B, dans B[X], B0 et B1 donc c'est encore vrai dans B1 ordre de B1.

 $\mathbb{R}(X)$ est un corps, donc d'après la question 16, c'est un anneau intègre. Alors, d'après la question 12, $F \leq G \iff FBD \leq GBD \iff AD \leq CB$, car d'après les questions 18 et 19, $FB = \frac{A}{B}B = \frac{A}{1} = A$ et de même, GD = C.

Définissons sur $\mathbb{R}(X)$ la relation binaire R de la façon suivante : pour tout $F, G \in \mathbb{R}(X)$, en écrivant $F = \frac{A}{B}$ et $G = \frac{C}{D}$ avec $A, B, C, D \in \mathbb{R}[X]$ et B et D unitaires, ce qui est toujours possible, on convient que F R G si et seulement si dans $\mathbb{R}[X]$, $AD \leq CB$.

Il faut montrer que cette définition est valide en prouvant que la condition $AD \leq CB$ ne dépend que de F et de G: supposons que $F = \frac{A'}{B'}$ et $G = \frac{C'}{D'}$ avec $A', B', C', D' \in \mathbb{R}[X]$ et B' et D' unitaires. Il s'agit de montrer que $AD \leq CB \iff A'D' \leq C'B'$.

 $\frac{A}{B} = F = \frac{A'}{B'}$, donc AB' = BA' et de même, CD' = C'D. Alors, en utilisant plusieurs fois la question 12 dans l'anneau intègre $(\mathbb{R}[X], +, \times)$,

$$AD \le CB \iff ADB' \le CBB' \text{ (car } B' > 0)$$

 $\iff BA'D \le CBB' \text{ (car } BA' = AB')$
 $\iff A'D \le CB' \text{ (car } B > 0)$
 $\iff A'DD' \le CB'D' = B'C'D$
 $\iff A'D' \le B'C' \text{ (car } D > 0).$

On a ainsi montré que s'il existe un ordre sur $\mathbb{R}(X)$ qui prolonge l'ordre défini sur $\mathbb{R}[X]$ en question 8 et pour lequel $(\mathbb{R}(X), +, \times, \leq)$ est un corps totalement ordonné, alors cet ordre est nécessairement égal à R. Ceci prouve donc l'unicité sous condition d'existence.

Synthèse : Il reste à montrer que R est un ordre sur $\mathbb{R}(X)$ qui prolonge l'ordre \leq défini sur $\mathbb{R}[X]$ en question 8 et pour lequel $(\mathbb{R}(X), +, \times, R)$ est un corps totalement ordonné.

- Soit $A, B \in \mathbb{R}[X]$. D'après les questions 18 et 19, $A R B \iff \frac{A}{1_{\mathbb{R}[X]}} R \frac{B}{1_{\mathbb{R}[X]}} \iff A \leq B, \text{ d'après la définition de } R, \text{ donc } R$ prolonge bien $\leq \sup \mathbb{R}(X)$.
- Soit $G, H, L \in \mathbb{R}(X)$. Ecrivons $G = \frac{A}{B}$, $H = \frac{C}{D}$ et $L = \frac{E}{F}$, avec $A, B, C, D, E, F \in \mathbb{R}[X]$ et B, D, F unitaires. Dans $\mathbb{R}[X]$, AB < AB, donc G R G. Ainsi, R est réflexive.
- Supposons que G R H et H R G. Alors $AD \leq CB$ et $CB \leq AD$, donc par antisymétrie de \leq , AD = CB, ce qui prouve que G = H. Ainsi, R est antisymétrique.
- Supposons que G R H et que H R L. Ainsi, $AD \leq BC$ et $CF \leq ED$. Alors, d'après la question 12, en utilisant que dans $\mathbb{R}[X]$, 0 < F et 0 < B, $ADF \leq BCF \leq BED$, or 0 < D, donc toujours d'après la question 12, $AF \leq BE$, ce qui prouve que G R L. Ainsi R est transitive, donc c'est bien une relation d'ordre.
- Dans $\mathbb{R}[X]$, l'ordre \leq est total, donc $AD \leq BC$ ou $BC \leq AD$. Ainsi, G R H ou H R G, ce qui prouve que l'ordre R est total.

— Supposons que
$$G$$
 R H .
$$(G+L)$$
 R $(H+L)$ $\iff \frac{AF+BE}{BF}$ R $\frac{CF+DE}{DF}$

$$\iff (AF+BE)DF \leq BF(CF+DE),$$
car DF et BF sont unitaires. Ainsi, d'après la question 12,
$$(G+L)$$
 R $(H+L)$ $\iff (AF+BE)D \leq B(CF+DE)$ $\iff AFD \leq BCF,$
d'après la compatibilité de \leq avec l'addition, puis encore avec la question 12,
$$(G+L)$$
 R $(H+L)$ $\iff AD \leq BC \iff G \leq H.$ Ainsi, R est compatible avec

- l'addition de $\mathbb{R}(X)$.
- Supposons que 0 R G et 0 R H. Ceci signifie que $0 \le A$ et $0 \le C$, or \le vérifie la règle des signes dans $\mathbb{R}[X]$, donc $0 \le AC$, ce qui prouve que 0 R $\frac{AC}{BD} = GH$. Ainsi, R vérifie la règle des signes. Ceci achève la preuve.
- **22**°) La relation $\leq \operatorname{sur} \mathbb{R}(X)$ est un prolongement de $\leq \operatorname{sur} \mathbb{R}[X]$, donc la démonstration de la question 10 reste entièrement valable et prouve que $(\mathbb{R}(X), +, \times, \leq)$ est un corps totalement ordonné non archimédien.
- 23°) D'après la question 10, pour tout $n \in \mathbb{N}$, $n \times 1_{\mathbb{R}(X)} < X$. Posons $N = \{n \times 1_{\mathbb{R}(X)} \ / \ n \in \mathbb{N}\}$. C'est donc une partie non vide majorée de $\mathbb{R}(X)$. Supposons que N possède une borne supérieure, que l'on notera $s \in \mathbb{R}(X)$. $s - 1_{\mathbb{R}(X)} \le s$, car $0 \le 1^2 = 1$, donc $-1 \le 0$. De plus, $s - 1 \ne s$, donc s - 1 < s. Par définition de la borne supérieure, s - 1 n'est donc pas un majorant de N. Ainsi, il existe $n \in \mathbb{N}$ tel que $s - 1_{\mathbb{R}(X)} < n \times 1_{\mathbb{R}(X)}$. On en déduit que $s < (n + 1) \times 1_{\mathbb{R}(X)}$, ce qui est incompatible avec la définition de s. Ainsi, N ne possède pas de borne supérieure.
- 24°) \diamond Soit K un corps totalement ordonné non archimédien. Il existe $x,y \in K$ avec x>0, y>0, et tels que, pour tout $n\in\mathbb{N}, nx\leq y$. Posons $A=\{nx\mid n\in\mathbb{N}\}$. Alors A est une partie non vide de K majorée par y. Comme pour la question précédente, supposons que A possède une borne supérieure notée s. Alors s-x< s, donc s-x ne majore pas A, donc il existe $n\in\mathbb{N}$ tel que s-x< nx. Alors s< nx+x=(n+1)x, ce qui contredit la définition de s. Ainsi A est une partie non vide majorée de K qui ne possède pas de borne supérieure.
- \diamond La réciproque est fausse car on sait d'après le cours que $\mathbb Q$ est un corps totalement ordonné archimédien mais si l'on pose $A=\{x\in\mathbb Q\ /\ 0\le x\le\sqrt2\},\ A$ est une partie non vide majorée de $\mathbb Q$ sans borne supérieure. Démontrons plus précisément ces deux affirmations :

Soit $x,y\in\mathbb{Q}$ tels que x>0 et y>0. Il existe $p,q,a,b\in\mathbb{N}^*$ tels que $x=\frac{p}{q}$ et $y=\frac{a}{b}$. Soit $n\in\mathbb{N}^*$. $nx>y\iff npb>aq$, or si l'on choisit $n=aq+1\in\mathbb{N}^*$, on a bien $npb\geq n>aq$, donc \mathbb{Q} est archimédien.

Supposons que $A = [0, \sqrt{2}] \cap \mathbb{Q}$ possède une borne supérieure dans \mathbb{Q} , notée s.

Si $s < \sqrt{2}$, par densité de \mathbb{Q} dans \mathbb{R} , il existe $\alpha \in \mathbb{Q}$ tel que $s < \alpha < \sqrt{2}$. Alors $\alpha \in A$ et s < a. C'est impossible.

De même si $\sqrt{2} < s$, il existe $\alpha \in \mathbb{Q}$ tel que $\sqrt{2} < \alpha < s$. Alors α est un majorant dans \mathbb{Q} de A, strictement inférieur au sup : c'est impossible. Ainsi, $s = \sqrt{2}$, donc $\sqrt{2} \in \mathbb{Q}$, ce qui est faux.